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UNIT-]

THE RIEMANN-STIELTJES INTEGRAL
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1.0 Introduction

In this unit, we will deal with the Riemann-Stieltjes integral and study its existence and properties. The
Riemann-Stieltjes integral is a generalization of Riemann integral named after Bernhard Riemann and
Thomas Joannes Stieltjes. The reason for introducing this concept is to get a more unified approach to
the theory of random variables. Fundamental Theorem of the Integral Calculus is discussed later on.



2 The Riemann-Stieltjes Integral
1.1 Unit Objectives

After going through this unit, one will be able to
e define Riemann-Stieltjes integral and characterize its properties.
e recognize Riemann-Stieltjes integral as a limit of sums.
e know about Fundamental Theorem of the Integral Calculus and Mean Value Theorems .
¢ understand the concept of Rectifiable Curves
1.2 Riemann-Stieltjes integral

We have already studied the Riemann integrals in our undergraduate level studies in Mathematics. Now
we consider a more general concept than that of Riemann. This concept is known as Riemann-Stieltjes
integral which involve two functions f anda . In what follows, we shall consider only real-valued

functions.
1.2.1 Definitions and Notations

Definitionl. Let [a,b] be a given interval. By a partition (or subdivision) P of [a,b], we mean a finite
set of points

P={x),%,.cccc... , X, }
such that
a=x,<x <x,<.... x <x =b

Definition 2. A partition P~ of [a,b] is said to be finer than P (or a refinement of P) if P" o P, that is ,
if every point of P is a point of P* je. P P .
Definition 3. The P and P, be two partitions of an interval [a,b]. Then a partition P" is called their

common refinement of B, and P, if P"=PUP,.

Definition 4. The length of the largest subinterval of a partition P ={x,,x,,....,x,} of [a,b] is called the
Norm (or Mesh) of P. We denote norm of P by |P| . Thus

|P| =max Ax, =max{x, —x,_, :i=12,....,n}
We notice that if P° o P, then ‘P‘ < |P| . Thus refinement of a partition decreases its norm.

Definition 5. Lower and Upper Riemann-Stieltjes Sums and Integrals

Let f be a bounded real function defined on a closed interval[a,b]. Corresponding to each
partition P of [a,b], we put
M, =1ub f(x) (x_,<x<x)

i-1 —

m, = glb f(x) (v, <x<x)
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Let a be monotonically increasing function on [a,b]. Then « is bounded on [a,b] since a(a) and a(b)
are finite.

Corresponding to each partition P={x¢,X1,............ Xp } of [a, b], we put
Ao, =a(x,)-a(x,,)
The monotonicity of « implies thatAea, > 0.

For any real valued bounded function f on [a,b], we take

L(Pafaa) = ZmiAai
i=1

U, f,a)=Y MAa,,
i=1

wherem, and M, are bounds of f defined above. The sums L(P, f,&) and U(P, f, ) are respectively
called Lower Stieltjes sum and Upper Stieltjes sum corresponding to the partition P. We further define

fdoa=lubL(P, f,x)

Q| Sy >~

[ fda =gloU(P, f,a),

b b
where lub and glb are taken over all possible partitions P of [a,b]. Then I fdo and I fda are

respectively called Lower integral and Upper integrals of f with respect to « .

b
If the lower and upper integrals are equal, then their common value, denoted by J fda , is called the

a

Riemann-Stieltjes integral of f with respect to «, over [@,b] and in that case we say that fis

integrable with respect to « , in the Riemann sense and we write f € R().
The functions f and « are known as the integrand and the integrator respectively.

In the special case, when a(x)=x, the Riemann-Stieltjes integral reduces to Riemann-integral. In such
b b
a case, we write L(P, ), U(P, ), '[f, jf and f € Rrespectively in place of L(P, f,a), U(P, f,),
b

j-fda, Ifda and f €R(x).

a



4 The Riemann-Stieltjes Integral

Clearly, the numerical value of j fda depends only on f, &, a andb and does not depend on the symbol
x. In fact x is a “dummy variable” and may be replaced by any other convenient symbol.
1.3 Existence and properties

1.3.1 In this section, we shall study characterization of upper and lower Stieltjes sums, and upper and
lower Stieltjes integrals.

The next theorem shows that for increasing function &, refinement of the partition increases the lower

sums and decreases the upper sums.

Theoreml. If P" is arefinement of P, f is bounded real valued function on [a,b] and o is

monotonically increasing function defined on [a,b] . Then,

e, f,a)> L(P, f,a)
UP", f.a)<U(P, f.a).
Proof. Let P ={x,,X ,cccccecerrenuene. ,Xx,} be a partition of [a,b]. Further, let P* be a refinement of P
having one more point.
Let x™ be such that point in the sub-interval [x, ,,x,] thatis
P ={x), X yeeeene . X s X X s e ,x,} . Then, let

> Vi-1° i

m, = glb.of fin [x,_,x,]
w, = glb.of f in [ x_,x"]
w, = glbof fin[x',x ]|

Obviously, m, <w;; m, <w, .

Then,

L(P,f,a)=mAa, +mAa, +........ +m,_ A, +mAa, + ... +mAa,

L(P',f.a)=mAc, +mAQ, +......... em o, () -a(x.) [rw[a(x)-a(x)]+
M A+ e +m, A,

Thus,

= (Wl _mi)(a(x*)_a(xi—l ))+(W2 _mi)(a(xi)_a(x*»

Now, wy,—m; 20 ; w,—m; 20
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Also, o is monotonically increasing function and x, , < x" <x, . So,
a(x* )— a(x,)=0
alx,)- a(x*)z 0
= L(P". f.a)- L(P, f,a)>0
= I(P", f.a)2 L(P. f.)
Similarly, U(P", f,a)<U(P, f.a).
If P* contains more points, then similar process holds and so the result follows.

Theorem 2. For any two partitions P, and P, of [a,b], let f be a bounded real valued function defined

on [a,b] and « is monotonically increasing function defined on [a,b], then
UP.f,a)<U(P,.[,a)

Proof. Let P be the common refinement of P, and P,, thatis, P =P, U P,. Then, using Theorem 1, we

have

LB, f,a)<L(P, f,a)SU(P, f,a)SU(P, f,a) .
Remark 1. If m < f(x)< M . Then,

m(a(b)-ala)) < L(P, f,a)<U(P, f,a) < M(a(b)- ala)).
Proof . By hypothesis

m<m;, <M, <M

= mAa, <mAa, <M Aa, < MAcq,

:>mzn: AaiSmii Aal.SMii Aal.SMZn: Aa,

i=1 i=1 i=l1 i=1

= m(a(b)—a(a)) < L(P,f,a) < U(P,f,a) < M(a(b)—a(a))_
Theorem 3. If f is bounded real valued function defined on [a,b] and @ is monotonic function defined
on [a,b]. Then,

) b
[ fda < | i
a a

Proof . Let Pla,b| denotes the set of all partition of [a,b]. For P, P, € Pla,b], we know that
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L(R,f,a)<U(BR, f,a) (1)

This holds for each P, € Pla,b], keeping P, fixed, it follows from (1) that U (Pz, f, 0[) is an upper
bound of the set {L(E,f,a) :Pe P[a,b]}.

b
But least upper bound of this set is I f (x)da .
a

ie, [f(x}a=lub{L(R,f.a):RePlab];

a

Since, least upper bound < any upper bound

b

If(x)daSU(E,f,a) (2)

a

b
This holds for each P, € P[a,b]. So, it follows from (2) that J f (x)da 1s a lower bound of the set
a

{U(P,.f.a): P, € Pla,b]}.

b
But greatest lower bound of this set is I fda .

b
ie, [fa=glb{U(B,f a):PePlab]}

Since, any lower bound < greatest lower bound.
b b

So,  [fda<|fia.
a a

Example 1. Let a(x)=x and define f on [0,1] by

LxeQ
0,xeQ

Then for every partition P of [0,1], we have

f(X)={

m,=0,M,=1, because every subinterval [x, ,,x,] contain both rational and irrational number.

i-1°

Therefore
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L(P, f,a) =Y mAx,
i=1
=0

U(P, f,a)=D M Ax,
i=1

:Z(xi -x_,)=x,-x,=1-0=1
i=1
Hence, in this case

jfdasjfda.

Theorem 4. Let « is monotonically increasing on [a,b] then f € R(«) iff for any €> 0, there exists a

partition P of [a,b] such that
U(P.f,a)-L(P.f.a)<e
Proof. The condition is necessary:

Let f be integrable on [a,b] i.e, f €R(a) on [a,b],

b b b
so that [ fda = fda = | fda (1)
a a a

Let £ >0 be given.

b
Since Ifda =sup{L(P, f,a): P is a partition of [a,b]}
a

So, by definition of l.u.b., there exists a partition P, of [a,b] such that

L(B,f.a)> £ fda~~ = j fda— (by (1))

f &
:>L(Pl,f,a)>£fda—§

:>L(P1,f,a)+§>ifda (2)

Again,
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b
Since jfda =inf{U (P, f,&): P is a partition of [a,b]}.

By the definition of g.1.b., there exists a partition P, of [a,b] such that

Z) ' 5 &
U(Pz,f,a)<:[fda+5=_[fda+5

:>U(Pz,f,a)<j.fda+§ (3)
Let P =P, U P, be the common refinement of 2 and P, , so that
U(P,f,a)<U(B,f,a) (4)

And L(B,f,a)<L(P,f,a) (5)

Now, we have

U(P, f.a)< U(Pz,f,a)<j'fda +§ (by (3))
<L(P1,f,a)+§+g (by (2))
=L(B.f.a)+¢
<L(P.f.a)+e (by (5))

=U(P,f,a)<L(P,f,a)+¢

or U(P,f,a)—L(P,f,a)<8.

The condition is sufficient:

Let &> 0 be any number. Let P be a partition of [a,b] such that
U(P,f,a)-L(P,f,a)<e (6)
Since lower integral condition exceed the upper integral.
b

b
So, |[fda<|fda.

a
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b b
= [ fda-| fda=0 (7)
a a

Now, we know that

b b
L(P,f,a)sJ.fdaéj.fdQSU(P,f,a)

a

b b
= [ fda~[ fla<U(P,f.a)~L(P.f.a)<¢ (8)
a a

From (7) and (8), we have

b b
0<[fda-|fla<e
a a

b
The non — negative number .[ fda — j fda being less than every positive number & must be zero,

‘ a
b b
ie, J.fda—J‘fda =0
a

a

b b
= [ fda = | fda .
a a

1.3.2 In this section, we shall discuss integrability of continuous and monotonic functions along with

properties of Riemann-Stieltjes integrals.

Theorem 1. If f is continuous on [a,b], then

0 feRa)

(1))  toevery >0 there corresponds a 6 >0 such that

<e

Y. f(t)Ae, - [ fia

for every partition P of [a,b] with |P| <0 and forall ¢, e[x,_,x,].
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Proof. (i) Let €>0 and select 77 > 0 such that

nla(b)-a(a)]<e 1)
which is possible by monotonicity of « on [a,b]. Also f is continuous on compact set [a,b].

Hence f is uniformly continuous on [a,b]. Therefore there exists a & > 0 such that
|f(x)—f(t)| <1 whenever |x—t| <0 forall xe[a,b], t €[a,b] ().
Choose a partition P with |P| <0 . Then (2) implies

M,-m<n (i=12,...,n)

Hence

UP.foa)~ L(P.foa) =Y MAa, - mAa,
i=1 i=1
= i(Mz _mi)Aai < niAai
i=1 i=1

=Y. [, (x) - ax,.)
= nfa(b)- a(@)

S
<n.—=e,

n

which is necessary and sufficient condition for f € R(«).

(11) We have
L(P.f.a)< Y f(t)Aa, <U(P, f.a)
and

L(P, f,a)< j flda<U(P, f,a)

Since 1 € R(«), for each €> 0 there exists o > 0 such that for all partition P with |P| <0, we have
U(P,f,a)-L(P, f,a)<e
Thus

<U(P, f,a)-L(P, f,a)

>/ 0)ra,~ [ fia
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<e

n b
Thus for continuous functions f, lim‘ Plso z f(t)Ae, exists and is equal to J. fda .
i=1

Theorem 2. If fis monotonic on [a,b] and if « is both monotonic and continuous on [a,b], then
feRa).

Proof. Let € be a given positive number. For any positive integer n, choose a partition P of [a,b] such
that

This is possible since « is continuous and monotonic on [a,b] and so assumes every value between its
bounds a(a)and «(b). It is sufficient to prove the result for monotonically increasing function 1, the

proof for monotonically decreasing function being analogous. The bounds of f* in [x, ,x;] are then

i-1°

m =f(x_), M,=f(x),i=12,...n.

Hence
UP, f,a)-L(P, f,a)= zn:(Ml. —-m,)Aq,

_a)-a(a) 3 B
- n ;(M: mi)
- HO DS )~ f ()
2Oy 10 - f (@)
<e for large n.

Hence f e R().

Example 1. Let /' be a function defined by

f(x)=1land f(x)=0 for x#x", a<x <b.

b
Suppose « is increasing on [a,b] and is continuous atx” . Then f € R(a) over [a,b] and J fda=0.

a

Solution. Let P = {x,,x,,......,x,} be a partition of [a,b] and let x" € Ax,. Since « is continuous at x,

to each > 0 there exists o >0 such that
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‘a(x) - a(x*)‘ < % whenever ‘x -~ x*‘ <J
Again since « 1is an increasing function,
* E *
a(x)—a(x)<§ for O<x—-x <6
and
. € .
a(x)—a(x)<5 for O0<x—x <O

Then for a partition P of [a,b],
Ao, =a(x;)—a(x, )

=a(x)-a(x)+ax)-alx,)

€ €
<—+—=e€.
2 2

" 0,2, # x
Therefore Z S(t)Aa, = {A
a,

i=1

that is,

<e

3 f(t)Ae, 0

Hence

" b
lim,, , > f(t)Aa, = [ fder =0
i=1 u

and so f € R(a) and Ifda =0.
Theorem 3. Let f, e R(a) and f, e R(a)on [a,b], then (f, + f,) € R(«) and
[(fi+f)da =] fda+] fda

Proof. Let P={a=x,,x,,......,x, = b} be any partition of [a,b]. Suppose further that M, ,m M, m, and
M,,m;are the bounds of f,, f,and f, + f,respectively in the subinterval [x,_,x,]. If o, a, €[x,_,,x,],

then

|[ﬂ(0!2) +f2(0!2)] _[fl(al) +f2(0!1)]|
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<|f(@) = fi@)]+ (@)~ f(@)
< (M =)+ (M —m))
Therefore, since this hold for all «,,a, €[x, |,x,], we have
M, —m < M=)+ (M —m) (1)
Since f,, f, € (), there exists a partition P, and P, of [a,b] such that
U(R. /@)~ (B, fra) <~

)
U(&Aa)—/:(fz,ﬁ,a){

These inequalities hold if £ and P, are replaced by their common refinement P.

Thus using (1), we have for f = f, + f,,

UP, f,a)-L(P, f,a) = i(Ml. —m,)A«,
i1
<> (M =m)Aa,+Y (M -m)Aa,
i1 i1
< % +§ (using (2))
=€c.
Hence f = f, + f, e R(x) .
Further, we note that
m,—m, <m;, <M, <M, +M,
Multiplying by A, and adding for i =1,2,......,n, we get
L(P, f,a)—L(P, f,,a)S L(P,f,a)SU(P, f,x)
<U(P, f,,a)<U(P, f,,a)+U(P, f,,c) 3)

Also

U(P. f.a) <[ fide +§ 4)

U(P. fr.a) <[ frdax +§ 5)
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Combining (3), (4) and (5), we have

j}.fdaSU(P,f,a)SU(P,fl,a)+U(P,f2,a)

b b
€ €
<|fda+|fdoa+—+—
e a5
Since eis arbitrary positive number, we have
b b b
j fda < j fda+ j fda (6)
Proceeding with (—f,),(—f,)in place of f and f, respectively, we have
b b b
[hda<[fda+|(-f)da
or
b b b
[fda>|fda+]| fda (7)
Now (6) and (7) yield
b b b b
[fda=[(f,+f)da=]fda+| fda.
Theorem 4.If f € R(a)and f € R(B) then f e R(a + f)and
b b b
[fd(a+p)=[ fda+] rdp.
Proof. Since f € R(a)and f € R(S), there exist partitions £ and P, such that
S
U(R.f,a)-L(R, f,a) <3

U(Jz,f,m—L(&f,ﬂ){

These inequalities hold if £ and P, are replaced by their common refinement P.
Also
Ala; + ) =[a(x) —a(x )]+ [A(x) = B(x.)]

Hence, if M, and m, are bounds of fin [x, ,x,],
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UP. f.(a+ )~ L(P.f-(a+ B) = 3 (M, ~m)A(@, + )

- Enl(Mf —m)Aa, + i(Mi —m)Ap,

€ €
<—+—=€.
2 2
Hence f € R(a + ).
Further
b
UP.f.a)< [ fda+=
/ 2
b
€
U, £, <[ fap+-
and
UP, f,a+p)=) MAc,+) MAS,
Also, then

Ifd(a+ﬂ)SU(P,f,a+ﬁ) =U(P, f,a)+U(P, f,p)
<ifda+§+jfd,6’+§

b b
=jfda+jfdﬂ+e

Since e is arbitrary positive number, therefore

b b b

[fda+py<|[ fda+]rdp.
Replacing f by—f, this inequality is reversed and hence

b b b

[fda+p)=[ fda+[ rdp.

Theorem 5. If /€ R(a)on [a,b], then f eR(a)on [a,c] and f € R(a)on [c,b] where ¢ is a point of
[a,b] and

jfda :jfda+jfda.
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Proof. Since /' € R(«), there exists a partition P such that
UP, f,a)-L(P, f,a)<e, €>0.
Let P* be a refinement of P such that P* = PU{c}. Then
L(P,f,a)<L(P", f,a)<UP", f,a)<U(P, f,a)
which yields
U(P", f,a)=L(P*, f,a)SU(P, f,a)~L(P, f,@) (1
<e

Let P and P, denote the sets of points of P between[a,c], [c,b] respectively. Then P and P, are
partitions of [a,c] and [c,b]and P" = P U P,. Also

U(P',f,a)=U(P, f,a)+U(PR, f,a) (2)
and
L(P",f,a)=L(R, f,a)+L(P,, f,a) 3)
Then (1), (2) and (3) imply that
UP', f,a)=L(P", f,a)=[U(R, f,a)~L(B, [,a)]+[U(B, f,a) - L(P,, f,&)]

<e

Since each of U(P, f,a)—L(B, f,a)and U(P, f,a)—L(P,, f,a)1s non-negative, it follows that
U(R.f.a)-L(P, f,a)<e

and
U(B, f,a)-L(P, f,a)<e

Hence f'is integrable on [a,c] and [c,b].

Taking inf for all partitions, the relation (2) yields

fda > fda+ | fda (4)

Q C—
Qe O]

But since f'is integrable on [a,c] and [c,b], we have
b c b
[fda> | fia+] fda (5)

The relation (3) similarly yields
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jfdagjfda+jfda

a

Hence (5) and (6) imply that
b c b
[fda={fia+| fia.

Theorem 6. If f € R(x), then

b b
(1) ¢f € R(e)and J. (cf)da = c_[ fda , for every constant c,

a

(i)  Ifin addition | f/(x)| <K on [a,b], then

< K[a(b)—a(a)].

j.fda

Proof.(i) Let f € R(a)and let g =c¢f . Then

U(P,g,a)= Zn:M;Aai = Zn:cM,.Aai
i=1 i=1

= cZn:MiAai
i=1

=cU(P, f,a)
Similarly
L(P,g,a)=cL(P, f,)
Since f € R(«), I a partition P such that for every €>0,

UP, f,a)~L(P, f,a) <=
C

Hence

U(P,g,a)—L(P,g,a):c[U(P,f,a)—L(P,f,a)]

S
<c.—=e€.
C

Hence g =c¢f e R() .

b
Further, since U(P, f,a) < dea +§ ,

(6)
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[gda<U(P,g,a)=cU(P, f,a)

b
€
<c||fda+—=
=
Since e is arbitrary
b b
[gda<c| fda
Replacing f by —f, we get

jlgda > cjf fda

Hence I(cf)da = CJ- fda.
(i1) If M and m are bounds of f € R(a)on [a,b], then it follows that
b
mla(b)—a(a)] < j fda < M[a(b)-a(a)] for b>a (1).

In fact, if a = b, then (1) is trivial. If b > a, then for any partition P, we have

mla(b)—a(a)]< Zn:miAal. =L(P, f,a)
< j fda

<U(P, f,a)=) M A,
<M[o(b)—a(a)]

which yields
mle(b) - a(@)] < [ fda < Mo(b) - ()] @
Since |f(x)| <K forall x e (a,b), we have

K< f(x)<K

so if m and M are the bounds of f in (a,b),
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—K<m< f(x)<M <K forall xe(a,b).

If b>a,then a(b)—a(a) >0 and we have by (2)
—Kl[a(b)—a(a)|<mlab)—-a(a)] < Ifda

<Mla(b)-a(a)] < K[a(b)—-a(a)]

Hence

<K[a(b)—a(a)].

j.fda

Theorem 7. Suppose f € R(a)on[a,b], m< f <M , ¢ is continuous on [m, M ] and A(x)=¢[ f(x)] on
[a,b]. Then h e R(a)on [a,b].

Proof. Lete>0. Since ¢ is continuous on closed and bounded interval [m,M], it is uniformly

continuous on [m, M ]. Therefore there exists 6 >0 such that 6 <e and
|p(s)—p(t)| <€ if |s—1|<S, s,te[m,M].

Since f € R(a), there is a partition P = {x,,x,,........ ,x,} of [a,b] such that
UP,f,a)-L(P, f,a)<s5’ (1).

Let M,,m, and M,,m, be the lub, glb of f(x)and ¢(x)respectively in [x, ,,x,]. Divide the number

1,2,...... ,h into two classes:
icAifM,-m <o
and

ieBifM,—m>5.

For i € 4, our choice of & implies that M, —m, <e. Also, for ie B, M; —m; <2k where k= 1ub|¢(z‘)

b

t e[m,M]. Hence, using (1), we have

5 Ag, <) (M, —m)Aa, <5 )

ieB ieB

so that Z Aa,; <6 . Then we have

ieB

U(P,h,a)—L(P,h,a) =Y (M, —m))Aa,+ Y (M, —m;)Aq,

<ela(b)—a(a)]+2ko
<[a(b)—a(a)]+2k] e
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Since e was arbitrary,
U(P,h,a)—L(P,h,a)<e , €>0.
Hence h e f(a).

Theorem 8. If f € R(a)and g € R() on [a,b], then fg € R(x),

f | € R(a)and

jffda

<[|f|de.

Proof. Let ¢be defined by ¢(¢) =¢*on [a,b]. Then h(x)=¢[f(x)]= f> € R(a) by Theorem7(in section
1.3.2). Also

1 2 2
fg=Z[(f+g) -(f-2rl.
Since f,g e R(a), f+gcR(a),f-gcR(a). Then (f+g)and (f-g)° eR(a)and so their

difference multiplied by % also belong to R(«) proving that fg € R(a).

If we take @(f)=|t

, again Theorem 7 implies that | /| € R(c). We choose ¢ =1 so that
c| fda=0

Then
dea‘:cjfda=jcfdasj|f|da

becausecf <|/].

1.3.3. Riemann-Stieltjes integral as limit of sums. In this section, we shall show that Riemann-

Stieltjes integral J. fda can be considered as the limit of a sequence of sums in which M,,m, involved in

the definition of I fda are replaced by the values of f.

Definition 1. Let P={a=x,,x,........ ,x, =b} be a partition of [a,b] and let points ¢,,¢,,......,¢, be such

that ¢, €[x,_,,x,]. Then the sum

S(P, f,a) = Z F()Aa,

is called a Riemann-Stieltjes sum of f with respect to « .
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Definition 2. We say that

linh%0 SP, f,a)=4

If for every €> 0, there exists a 0 > 0 such that |P| <O implies
IS(P, f,a)— 4| <e.

Theorem 1. If 1imm_)0 S(P, f,a)exists, then f e R(a)and

b
lim,,, S(P, f.a) = [ fda.

Proof. Suppose lim‘ Ps0 S(P, f,a)exists and is equal to A. Then given e> 0there exists a & >0 such

that |P| < ¢ implies
IS(P, f,a)~ 4] <§
or
A—§<S(P,f,a)<A+§ (1)

If we choose partition P satisfying |P| < and if we allow the points #, to range over [x, ,,x,], taking lub

i-1°

and glb of the numbers S(P, f,«) obtained in this way, the relation (1) gives
€ €
A—ESL(P,f,a)SU(P,f,a)S A+E
and so
€ €
U(P,f,a)—L(P,f,C()<5+E:€
Hence f € R(«) . Further
€ €
A=< L(P.f @) sjfda <UP,f.a)<d+-
which yields
€ €
A——<|fda<A+—
2 -ff 2

or

[fda=4=lim,  S(P.f.a).
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Theorem 2. If

(1) £ is continuous, then
b
lim, , S(P, f, @) = j fla
(11) f € R(a)and « is continuous on [a,b], then
b
limy, , S(P, f,@) = | fda.

Proof. Part (i) is already proved in Theorem 1(i1) of section 1.3.2 of this unit.

(ii) Let / € M(r), a be continuous and €> 0. Then there exists a partition P such that
U(P*,f,a)<jfda+§ (1)

Now, « being uniformly continuous, there exists ¢, >0 such that for any partition P of [a,b] with

|P| < 0,, we have

S

Aa. =a(x)—a(x. ;)< for all 1
c=ax)—a(x,) A

where n is the number of intervals into which P* divides [a,b]. Consider the sum U(P, f,«). Those

intervals of P which contains a point of P"in their interior contribute no more than:

(n—DmaxAq,.M < # < % to UP"f,a) 2)
Then (1) and (2) yield
€
U(P, f,a)<| fla + 3)

for all P with |P| <.

Similarly, we can show that there exists a &, > 0 such that
€
L, fe)> | fda—= (4)

for all P with |P| < ,.

Taking 6 =min{o,,d,}, it follows that (2) and (3) hold for every P such that |P| <0.

Since

L(P,f,0)<S(P,f,a)SU(P, f,x)
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(3) and (4) yield

S(P,f,a)<jfda+§
and
€
S(P, f,«a doa——
(P.f.@) >[ fda——
Hence
€
S(P, f,o)—| fda|<—
[S(P.f.0)~ [ fda| <
for all P such that |P| <6 and so
lim,,,_, S(P, f,a)= j fda
This completes the proof of the theorem.

The Abel’s Transformation (Partial Summation Formula) for sequences reads as follows:

Let <a, > and <b, > be sequences and let
A =a,+a +..... +a (4,=0),

then
q q-1
Z ab = Z A,(b,=b, )+ Ab,~A, b,
n=p n=p

1.4 Integration and Differentiation. In this section, we show that integration and differentiation are
inverse operations.

Definition 1. If / € R on [a,b], then the function F defined by
t
F() = f(x)dx, t €[a,b]

is called the “Integral Function” of the function f.

Theorem 1. If f R on [a,b], then the integral function F of f is continuous on [a,b].

Proof. We have
F(t) = [ f(x)dx

Since f e, it is bounded and therefore there exists a number M such that for all x in [a,b],

S| <M.
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Let € be any positive number and ¢ be any point of [a,b]. Then

c+h

F(c)= j F(x)dx, F(c+h)= j F(x)dx

Therefore

c+h

|F(c+h)-F(c)|= j F(x)dx — j F(x)dx

c+h

= j F(x)dx

<M |h|
<e if |hl<—.
M

Thus |(c +h) —c| <o = 5 implies |F(c + h) —F(c)| <e. Hence F is continuous at any point ¢ €[a,b]
and is so continuous in the interval [a,b].
Theorem 2. If f is continuous on [a,b], then the integral function F is differentiable and
F'(x))=f(x,), x€[a,b].
Proof. Let f be continuous at x, in [a,b]. Then there exists 6 >0 for every €>0 such that
()~ f(x,)|<e (1

whenever|t—x0|<5.Let X,—0<s<x,<t<x,+0 anda<s<t<b,then

‘F(z)—F(@ P

t—s

: ‘i [ £ Gode— 1)
t—s?

%ij(X)dx—ijf(xo)dx

<e,

j fO0) = £(x,)]dx

1 t
X X
L S![f( )= ()
(using (1)).
Hence F'(x,) = f(x,) . This completes the proof of the theorem.

Definition 2. A derivable function F such that F' is equal to a given function fin [a,b] is called

Primitive of f.
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Thus the above theorem asserts that “Every continuous function f possesses a Primitive, viz the integral

function I f(x)dx.”

Furthermore, the continuity of a function is not necessary for the existence of primitive. In other words,
the function possessing primitive is not necessary continuous. For example, consider the function f on

[0,1] defined by

2xsinl—cosl,x #0
f(x)= x X
0,x=0

It has primitive

1
x’sin—,x#0
F(x)= X
0,x=0
Clearly F'(x)= f(x)but f(x) is not continuous at x=0,1i.e., f isnot continuous in [0,1].

1.5 Fundamental Theorem of the Integral Calculus

Theorem 1 (Fundamental Theorem of the Integral Calculus). If f € R on [a,b] and if there is a
differential function F on [a,b] such that F'= f, then

jf(x)dsz(b)—F(a).

Proof. Let P be a partition of [a,b] and choose ¢,,(i=1,2,.....,n) such that x,, <t <x,. Then, by

Lagrange’s Mean Value Theorem, we have

F(x)-F(x_)=(x _x[—l)F’(ti) =(x,—x_,)f() (Since F'= )
Further

F(b)~F(a)= Y [F(x)~ F(x,,)
=3 £ -x.)
= f)Ax

b
and the last sum tends to J f(x)dx as |P| — 0, by theorem 1 of section 1.3.3, taking a(x) = x . Hence
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j f(x)dx = F(b)-F(a).

This completes the proof of the theorem.

The next theorem tells us that the symbols da/(x) can be replaced by a'(x)dx in the Riemann-Stieltjes

b
integral I f(x)da(x). This is the situation in which Riemann-Stieltjes integral reduces to Riemann

a

integral.

Theorem 2. If feRand a'eRon [a,b],then f e R(a)and

j fda = j f(x)a (x)dx

a

Proof. Since f e R, a’' e R, it follows that their product fa'e€R. Let e> 0 be given. Choose M such
that | f | <M. Since fa'eRand a'eR, using Theorem 2(ii) of section 1.3.3 for integrator as x, we

have
‘Z F@e(t)Ax, - | fa"<e (1),

if |P| <5, and x_, <t <x,and
> a)as, - [a

if |P| <o,andx, <t <x,.Letting ¢, vary in (2), we have

<e (2).

‘Z o'(s)Ax, — [ < 3).

if |P|<d,and x,_ <s,<x, .From (2)and (3) it follows that

‘Z a'(t)Ax, —J-a’ +J-a’ - z a’(sl.)Ax[‘
< ‘Z a'(t)Ax, - | a"+‘2a'(s,,)Ax,, - a"

<et+e=2¢

or
D le't)—a'(s)|Ax, <2 € (4).
if |P| <0,and x,_, <t <x,,x_ <5 <x.

Now choose a partition P so that |P|<5=min{51,52}and choose ¢ €[x, ,,x;]. By Mean Value
Theorem,
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Aa, =a(x)-a(x_)=a'(s)(x —x_,)
=a'(s,)Ax,
Then, we have
> f@)Aa =Y (1) @)Ax + Y fe)la(s) - @Ay (5),
Thus, by (1) and (4), it follows that
> fapne - [ fa| =X ey @) - fa'+ Y )l (s) - a'()lAx,
<e+2eM =e(1+2M)

Hence
lim,_, 3" £(t)Ax, = [ f(x)e' (x)dx
or

j fda = j F()a'(x)dx .

2 2
Example 1. Evaluate (i) Ixzdxz , (ii) j [x]dx’ .

0 0
Solution. We know that

j fda = j f(x)a'(x)dx

Therefore
2 2 2
J.xzabc2 = _[x2 (2x)dx = I 2x°dx
0 0 0
4 2
21X | =3
4 0
and

J%[x]dx2 = Jz.[x]2xdx

= j[x]2xdx + j[x]2xdx

2|2

X

2
=0+I2xdx:O+2 5
1

1
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=0+3 = 3.
We now establish a connection between the integrand and the integrator in a Riemann-Stieltjes integral.

We shall show that existence of J. fda implies the existence of jadf .

We recall that Abel’s transformation (Partial Summation Formula) for sequences reads as follows:

“Let <a,> and <b, > be two sequences and let 4 =a,+a, +.....+a, (4,=0). Then
q g-1
> ab, =Y A(b,~b,)+Ab —A, b, (*).”
n=p n=p
1.5.1 Theorem (Integration by parts). If f € R(a)on [a,b], then o € R(f)on [a,b] and

[ fG)da(x) = f(B)a®) - f(@)a(a) - [ a(x)df (x)

(Due to analogy with (*), the above expression is also known as Partial Integration Formula).

partial summation, we have

n+l

S(P, f,a)= if(fi)[a(xf) —a(x_)]= f(b)a(b)- f(a)a(a)- Z a(x L&)~ f ()]

= f(D)a(b) - f(a)a(a)-S(Q.a, f)

since ¢ <x_ <t .If |P| -0, Q| — 0, then

S(P, f,a)—> j fdaand S(O,a, f) —> j adf .
Hence
[ fda = f(BYa(b) - f(@a(a)- [adf .

1.5.2 Mean Value Theorems for Riemann-Stieltjes Integrals. In this section, we establish Mean
Value Theorems which are used to get estimate value of an integral rather than its exact value.

Theorem 1.5.2(a). (First Mean Value Theorem for Riemann-Stieltjes Integral). If f is continuous
and real valued and « be is monotonically increasing on [a,b], then there exists a point X in [a,b] such
that

[ fda = fOla(b)-a(a)].

Proof. If a(a)=a(b), the theorem holds trivially, both sides being 0 in that case ( @ become constant

and so da =0). Hence we assume that a(a) < a(b) . Let

M =1lub f(x), m=glb f(x). a<x<b
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Then

m< f(x) <M
or
mla(b) - a(@)) < [ fde: <Ma(b) - a(a)]

Hence there exists some c satisfying m < ¢ <M such that
b
[ fda =cla(b)-a(a)]
Since f is continuous, there is a point x €[a,b] such that f(x)=c and so we have
b
[ f0)da(x) = f()ab)-a(a)]

This completes the proof of the theorem.
Theorem 1.5.2(b) (Second Mean Value Theorem for Riemann-Stieltjes Integral). Let f be

monotonic and « be real and continuous. Then there is a point x € [a,b] such that
b
jfda = f(@la(x)-a(a)]+ f (b)[a(b) - a(x)]
Proof. By Partial Integration Formula, we have
b b
[ fda = f(B)ab) - f(@)a(a)- [ adf

The use of First Mean Value Theorem for Riemann-Stieltjes Integral yields that there is x in [a,b] such
that

[adf = a(x)[f(b)- f(a)]
Hence, for some x €[a,b], we have
ffda = f(B)a(b) - f(a)a(a)—a(x)[f(b) - f(a)]

= f(@la(x)-a(a)]+ f(b)la(b) - a(x)]
which proves the theorem.
1.5.3 We discuss now change of variable. In this direction we prove the following result.

Theorem 1. Let fand ¢ be continuous on [a,b]. If ¢ is strictly increasing on [«, ], where

a=¢(a), b=¢(B), then
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b B
[ fGodx = £(@O)dd(»)

b
(this corresponds to change of variable in I f(x)dx by taking x =¢(y)).

Proof. Since ¢ is strictly monotonically increasing, it is invertible and so

a=¢"'(a), f=¢"(b).
Let P={a=x,,x,.....x, =b}be any partition of [a,b] and QO={a=y,,y,......», =B} be the
corresponding partition of [a, ], where y, =¢'(x,) . Then

Ax; =X, =X

=0(y)—-o(y.)

=A¢,

Let forany c, € Ax,, d, € Ay,, where ¢, e ¢(d,). Putting g(y) = f[4(»)], we have
S(P.)= f()Ax ()

SWICCHLY
= Zg(di)A(ﬁi
=5(0.2,9)

b
Continuity of f implies that S(P, /) —> j f(x)dx as |P| — 0 and continuity of g implies that

B
S(0.2.¢) > [g(»)dpas|0] - 0.

Since uniform continuity of ¢ on [a,b] implies that |Q| —0as |P| — 0. Hence letting |P| —0 in (1),

we have
b B B
[ fGodx=[g(ndg=[ FB)dg(y)

This completes the proof of the theorem.

1.6 Integration of Vector —Valued Functions. Let f, f,,......, f, be real valued functions defined on

[a,b] and let f =(f,, fy,......, f;) be the corresponding mapping of [a,b] into R*.
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Let o be monotonically increasing function on [a,b]. If f eR(a) for i=1,2,

f € R(a)and then the integral of f is defined as

b b
Thus J. fda is the point in R* whose ith coordinate is J. fda .

It can be shown that if f € R(a), g eR(a),

then

0 [(f+eda=|ria+|gda

(ii) jfda:jfda+Ifda,a<c<b.

(i) if feR(a,), feR(a,),then feR(e, +a,)
and

jifd(oﬁ +0£2) =jfd0{1 +j).fd0(2

a

,k , we say that

To prove these results, we have to apply earlier results to each coordinate of /. Also, fundamental

theorem of integral calculus holds for vector valued function /. We have

Theorem 1. If fand F map [a,b] into R*,if f eR(a)if F' = f, then

jf(ﬂdt:F(b)—F(a)

Theorem 2. If f maps [a,b] into R'and if f e R(e)for some monotonically increasing function ¢ on

[a,b], then |f| € R(a)and

Sj.|f|da.

a

Jb‘fda

a

Proof. Let

Then
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Since each f; € R(«), the function f;* € R(a)and so their sum £ +.....+ f; € R(ar) . Since x’is a

continuous function of x, the square root function is continuous on [0,M ] for every real M. Therefore

|f]eR(a).
Now, let y=(y,,,,....y, ), where y, =jfl.da,then

y=]Ha

and
b =25t =2 ] fda
= [ yf)da

But, by Schwarz inequality

IRRAGIEINAG

, (a<t<b)
Then

b <|J1/da (1)
If y =0, then the result follows. If [y|# 0, then divide (1) by |y| and get

< J17]de

b

Sj|f|da.

a

or

j‘fda

1.7 Rectifiable Curves. The aim of this section is to consider application of results studied in this
chapter to geometry.

Definition 1. A continuous mapping y of an interval [a,b] into R"is called a curve in R*.
If y:[a,b]— R" is continuous and one-to-one, then it is called an arc.
If for a curve y:[a,b]—> R",
y(a)=y(b)
but
y(t)# y(t,)

for every other pair of distinct points ¢,,¢, in [a,b], then the curve y is called a simple closed curve.

Definition 2. Let f :[a,b] - R"be amap. If P={x,,x,,....,x,}is a partition of [a,b], then

9

V(foa,)=lib | £(x) = £ (x,.)
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where the lub is taken over all possible partitions of [a,b], is called total variation of f on [a,b]. The

function £ is said to be of bounded variation on [a,b] if V(f,a,b) <+x.

Definition 3. A curve y:[a,b] > R" is called rectifiable if y is of bounded variation. The length of a

rectifiable curve y is defined as total variation of y, i.e.,, V(y,a,b). Thus length of rectifiable curve

y = lub2|y(xi) _7’(?%_1)| for the partition(a =x, <x, <...<x, =b).
i=1

The i" term |;/(xl.)—;/(xl.4)| in this sum is the distance in R'between the points y(x._)and y(x,).

Further Z|y(xl.)— y(xH)| is the length of a polygon whose vertices are at the points

i=1
7(x,),7(x,),....., 7(x,) . As the norm of our partition tends to zero, then those polygons approach the

range of y more and more closely.

Theorem 1. Let » be a curve in R*.If ' is continuous on [a,b], then ¥ is rectifiable and has length

b

[lr@)ae.

Proof. It is sufficient to show that J.|7/'| =V(y,a,b). So, let {x,,....,x,} be a partition of [a,b].

Using Fundamental Theorem of Calculus for vector valued function, we have

Zn:|7(xi)_7(xi—1)| = Zn:

i=1

j y'(t)dt

Xi-1

<3|

i=1
Xi-1

y'(0)|dt

b
= [ly' @i
Thus

V(y.a.b)< |y (1).

To prove the reverse inequality, let € be a positive number. Since ' is uniformly continuous on [a,b],
there exists 6 >0 such that

7'(s)—;/’(t)| <e, if |s—t| <9J.

If mesh (norm) of the partition P is less than ¢ and x, | <¢<x,, then we have

YO <]y ()| +e,
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so that

[ r'@)di—e ax, <]y'(x)|Ax

X,

[ 0@+ 7e)— 7 0de

< +

j y'(t)dt

| o) =y

< |7(xi)_7(xi71)|+ € Ax,

Adding these inequalities for i =1,2,....,n, we get

[l lde< ) -7 )+ <b-a)

=V(y,a,b)+ e(b—a)

Since e is arbitrary, it follows that

b

[ly'@\dt<v(y,a.b) ).
Combining (1) and (2), we have

[ly'@ldt=v(y,a,b)

b
Hence the length of y is I|}/'(t)| dt .
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2.0 Introduction

In this unit, we will consider sequence and series of functions whose terms depend on a variable.
Uniform convergence of sequence or series is a concept of great importance in its domain. With the help
of tests for uniform convergence, we will naturally inquire how we can determine whether the given
sequence or series does or does not converge uniformly in a given interval. The Weierstrass
approximation theorem describes that every continuous function can be “uniformly approximated” by
polynomials to within any degree of accuracy.

2.1 Unit Objectives
After going through this unit, one will be able to
e learn about pointwise and uniform convergence of sequence and series of functions
e cxamine uniform convergence through various tests for uniform convergence.
e study uniform convergence and continuity.
e understand importance of Weierstrass approximation theorem.
2.2 Sequence and Series of Functions

Let f, be a real valued function defined on an interval I (or on a subset D of R ) and for each n € N | then
<fi, ... N ST > is called a sequence of real valued functions on I. It is denoted by {f,} or <f,>.
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If <f,> is a sequence of real valued functions on an interval I, then fi+ f,+......... Htoo. is called a

series of real valued functions defined on I. This series is denoted by Z /S, or simply an . That is, we

n=1
shall consider sequences whose terms are functions rather than real numbers. These sequences are useful
in obtaining approximations to a given function.

2.3 Pointwise and Uniform Convergence of Sequences of Functions

We shall study two different notations of convergence for a sequence of functions: Pointwise
convergence and uniform convergence.

Definition 1. Let A < R and suppose that for each n € N there is a functionf : A — R . Then(f ) is
called a sequence of functions on A. For eachx € A, this sequence gives rise to a sequence of real

numbers, namely the sequence (f, (x)) :

Definition 2. Let A c Rand let (f ) be a sequence of functions on A. Let A, < Aand suppose

f:A, > R. Then the sequence (f,) is said to converge on A, to f if for eachx € A, the sequence

(f, (X)> converges to f(x) in R.
In such a case f'is called the limit function on A of the sequence(f, ).

When such a function f exists, we say that the sequence (f ) is convergent on A, or that (f )

converges pointwise on A to fand we write f (X) =lim_ f (X), X €A,.

n—o0 n

Similarly, ifZ:fn (X) converges for everyx € A, and if f(x) = Z:’Zl f (x) , x € A,. The function f is
called the sum of the series an .

The question arises: If each function of a sequence <fn> has certain property, such as continuity,

differentiability or integrability, then to what extent is this property transferred to the limit function? For
example, if each function f is continuous at a pointx,, is the limit function f also continuous atx,? In

general, it is not true. Thus, pointwise convergence is not so strong concept which transfers above
mentioned property to the limit function. Therefore some stronger methods of convergence are needed.
One of these methods is the notion of uniform convergence:

n

We know that f, is continuous at x, if lim_, f, (X) =f (XO).On the other hand,
fis continuous at x, if lim_, f (x)=1(x,) o)
But (1) can be written as

lim_, lim_ f (x)=lim, lim_,_f, (x) (2)

X=X n—>0 n X=Xy "N
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Thus our question of continuity reduces to “can we interchange the limit symbols in (2)?” or “Is the
order in which limit processes are carried out immaterial “. The following examples show that the limit

symbols cannot in general be interchanged.

Example 1. A sequence of continuous functions whose limit function is discontinuous:

Let
2
fn(x)—1+X2n,xeR,n=1,2, .........
We note that
0 if |x|<1
limn_mfn(x)zf(x)= % if |x|=1
1 if |x|>1

Each f is continuous on R but the limit function f is discontinuous at x = 1 and x = -1.
Example 2. A double sequence in which limit process cannot be interchanged:
Form=1, 2,....,

n=1,23,..., let us consider the double sequence

m
S = m+n’

For every fixed n, we have
lim_, S A =1

and so
lim,__ Iim_ S, =1

On the other hand, for every fixed m, we have

. . 1
lim S, =lim =0
n
I+—
m
and so
Hence lim  lim_ S, #lim_, lim S
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Example 3. A sequence of functions for which limit of the integral is not equal to integral of the
limit: Let
f (X) =n2x(1—x)n , xeR, n=12,....

n

If 0<x<1, then

and so
1
[fe0 dx=o.
0
1 1
But J-fn(x) dx:nzj-x(l—x)n dx
0 0
o’
n+l n+2
n2
T (n+1) (n+2)
1
and so lim_ J.fn (x)dx =1
0
1 1
Hence lim, ., [f,(x) dx # [ (lim, £, (x)) dx .
0 0

Example 4. A sequence of differentiable functions {f } with limit 0 for which {f '} diverges.

Let

f(x):sinnx if xeR, n=1,2,

Jn

Then lim  f (X) =0 for all x.
But £ (x) = v/n cosnx

and so lim_ f (X) does not exist for any x.
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Definition 3. A sequence of functions {f } is said to converge uniformly to a function f on a set E if for

n

every £> 0 there exists an integer N (depending only on €) such that n > N implies

f,(x)-f(x)<e  forallxeE (*).

Geometrical Interpretation of uniform convergence:

fo)+& fn(x)

f(x)-€

If each term of the sequence (f ) is real-valued, then the expression (*) can be written as
f(x)—g<fn (x) <f(x)+8 for alln >N and for allx € E.

This shows that the entire graph of f lies between a “band” of height 2¢ situated symmetrically about
the graph of f.

Definition 4. A series an (X) is said to converge uniformly on E if the sequence {Sn } of partial sums
defined by S, (x) =D _f, (x)converges uniformly on E.
i=1

Theorem 1. Every uniformly convergent sequence is pointwise convergent but not conversely.

Proof. Let {f, } be a sequence of functions which converges uniformly to f on E.

For given & >0 , there exists a positive integer N (depending only on &) such that

f,(x)= f(x)|<e foralln>N ... (1)

Since (1) is true for all xe E.

fn(X)—f(xX <g foralln>N
is true for every xe £,
Hence f, converges pointwise to f on E.

The converse is not true which is shown by following example.
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Example 5. Consider the sequence < f, > defined by

O<x<l1

"(x): nx+1

Then,  f(x)=lim f,(x)=lim
n—»o n—o px + 1
Hence, < f, > converges pointwise to 0 forall 0<x<1

Let £ > 0 be given. Then for convergence, we have

fn(x)—f(x)kg , n>n,

or -0<¢e , n>n
nx+1
1
or <é&.
nx+1
1
or —<¢&
nx
or nx>—.
&
or n>—.
X&

If n, is taken as integer greater than — , then
xXe

f,(x)-f(x) | <& forall n>n,

Since n, depends bothon ¢ & x in(0,1),so f, does not converge uniformly on (0,1).

in any interval [a, b], a > 0. Then

Example 6. Consider the sequence (S, ) defined by S, ( ) =
X+n

=0

S =1imS =1
(x)=lims, (x)=lim

n—o

For the convergence, we must have
‘SH(X)—S(X)‘<8 , n>n, 0

<e n>n,

b

-0

or
X+n
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1
or <eg
X+n
1
or X+n>—
€
1
or n>—-x
€

If we select n,, as integer next higher to 1 , then (1) 1s satisfied for m(integer) greater than 1 which
€
does not depend on x € [a,b]. Hence the sequence (S, ) is uniformly convergent to S(x) in [a, b].

Example 7. Consider the sequence (f ) defined by

X
fn(x):1+nx, x=0

Then

f(x)=lim

=0 forall x=>0.
n-» | 4+ nx

Then (f ) converges pointwise to 0 for all x > 0. Let € > 0, then for convergence we must have

fn(x)—f(x)‘<:3,n>n0

X
or -0l<g,n>n,
1+ nx
X
<g
1+ nx
X < €+ nxe
nxe > X —¢
X—¢
n>
XE
x 1
n>—=-—
Xe €

. . 1
If n, is taken as integer greater than —, then
€

f, (x)- f(x)‘ <e, forall n>n, and for all x €[0,)

Hence (f,) converges uniformly to f on[0,00) .
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Example 8. Consider the sequence (f ) defined by

f (x):x“, 0<x<1

n

Then

f (x)=limx" =

n—oo

0 if 0<x<«1
if x=1

Let € > 0 be given. Then for convergence, we must have

‘fn (x)—f(x)‘ <g, n>n,

or x" <eg
Sie
or - >=
X €
logl
or n>—=2,
1
log—
X
logl
Thus we should take n; to be an integer next higher to ‘;: . If we take x = 1, then m does not exist.
log—
X

Thus the sequence in question is not uniformly convergent to f in the interval which contains 1.

Definition 5 (Point of non—uniform convergence). A point which is such as the sequence is non —
uniformly convergent in any interval containing that point is called a point of non—uniform convergence.

In the following example x = 0 is a point of non—uniform convergence.

Example 9. Consider the sequence (f, ) defined by f, (x) = , 0<x<a.

1+n’x?

Then if x = 0, then f (X) =0

and so f(x):limn_m fn(X)=0.
If x#0 , then
£(x)=lim, ,, f, (x) :limn%% ~0.

Thus f is continuous at x = 0. For convergence, we must have

f

n

(x)—f(x)‘ <g, n>n,.
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nx -
or — <&
1+n°x?
nx
or 1+n’x*——>0.
€
1 1 /1
or nx >—+—, [—-4.
2¢ 2 \e

Thus we can find an upper bound for n in any interval 0 < a < x <b, but the upper bound is infinite if the
interval includes 0. Hence the given sequence is non-uniformly convergent in any interval which
includes the origin. So 0 is the point of non-uniform convergence for this sequence.

Example 10. Consider the sequence (f,) defined by

f (X):tan’lnx, 0<x<a.

n

Then

Thus the function is discontinuous at x = 0.

For convergence, we must have for € > 0,

f, (X)—f(X)‘<8, n>n,
T -1
or ——tan nx<e
2
or cot'nx <eg
or nx >
tane
1 1
or n> —
tane\ X

Thus no upper bound can be found for the function on the right if O is an end point of the interval. Hence
the convergence is non-uniform in any interval which includes 0. So, here 0 is the point of non-uniform
convergence.

Definition 6. A sequence {f } is said to be uniformly bounded on E if there exists a constant

n

M > 0 such that

f (X)‘ <M forall x in E and all n. The number M is called a uniform bound for {f, } .
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For example, the sequence (f ) defined by f (x) =sinnx, X € Ris uniformly bounded. Infact,

f

n

(x)‘ = |sinnx| <1 forall xeR and forall ne N .

If each individual function is bounded and if f, — f uniformly on E, then it can be shown that {f } is

n

uniformly bounded on E. This result generally helps us to conclude that a sequence is not uniformly
convergent.

2.4 Cauchy Criterion for Uniform Convergence

We now find necessary and sufficient condition for uniform convergence of a sequence of
functions.

Theorem 1 (Cauchy criterion for uniform convergence). The sequence of functions{fn }, defined on

E, converges uniformly if and only if for every &>0 there exists an integer N such that
fn(x)—fm(x)‘<8.

Proof. Suppose first that (f ) converges uniformly on E to f. Then to each € > 0 there exists an integer
N such that n > N implies

m>N,n>N, x eE imply

f

n

(X)—f(X)‘ < %, forall xeE
Similarly for m > N implies

£, (x)~£(x)| <§, forall x € E

Hence, for n > N, m > N, we have
fn (X) - fm (X)‘ =

<

f (x)-f(x)+f(x)-f, (x)‘
f (x) - f(x)‘ +‘fm (x) + f(x)‘

<g/2+¢/2=¢ forall xeE

Hence the condition is necessary.

Conversely, suppose that the given condition holds. Therefore {f,(x)} is a Cauchy sequence in R for
each x € E. Since R is complete, it follows that {f,(x)} converges to some value f(x), foreachx € E &
{fa} converges to f pointwise. We need only to show that the convergence is uniform. to show this let
€>0 be given, then by hypothesis, ny € N (depending only on ¢ ) such that

f (x)—fm (X)‘ <g,

nm>Nand xeE
Let n be fixed and let m — o, then we have

f

n

(x)—f (X)‘<8 V xekE

Hence f, — f uniformly on E.
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We now find necessary and sufficient condition for uniform convergence of a series of functions.

Theorem 2 (Cauchy criterion for uniform convergence). A series of real functions Z /., each

defined on a set X converges uniformly on X iff for every £>0,3 n, € N (depending only on &)

such that
S (X)+ fria (%) F e +fn+m(x)‘<8 fornzn,,m=1,xeX.
Proof. Let S, (x)= f,(x)+ £, (x)+.oovec. + f,(x),Vx € X be a partial sum
Zfi(x)zfl(x)+f2(x)+ ............... +f,(x), xeX
i=l1

so that {S, (x)} is a sequence of partial sums of the series Z f, - Now the series Z f,, is uniformly

n=1

convergent iff the sequence {S, } is uniformly convergent.

i.e., for given ¢ > 0,3 a positive integer m such that n > m

S m (x)— S, (x)‘ <gm=L2,..... [By Cauchy criteria of uniform converge of sequence]

~

ot (x)+ e (x)+ ............ +foim (x){ <gm=12,..

This completes the proof of Cauchy’s Criteria for Series.
2.5 Tests for Uniform Convergence

In this section, we study M,-test, Weierstrass M-test, Abel’s Test and Dirichlet’s Test for uniform
convergence and some examples which emphasis on the applications of these tests.

Theorem 1. Suppose limf, (x)=f(x), x€E and let M, = lub

f,(x)—=f(x). Then f, — f uniformly
on E if and only if M, — 0 as n — oo . (This result is known as M - Test for uniform convergence)
Proof. We have

lub

xeE

fn(x)—f(x)‘=Mn —>0 asn — .

Hence lim

n—o

f,(x)-f(x) =0 forall xeE,

Hence to each € > 0, there exists an integer N such thatn >N, x € E imply

£, (X)—f(X)‘ <eg

Hence f, — f uniformly on E.
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Example 1. By using M,, — test, show that the sequences {f, } where

nx : . . .
£, (x) = T nis? is not uniformly convergent on any interval containing 0.
+n°x
. . . nx
Solution. Here f(x)=1limf,(x)= lim———
n—0 n—o | 4+pnx
. x/n
=lim————~=0

n>o]/n* + x?

Thus the sequence { £, } converges pointwise to the function f identically 0.

Now M, = sup |fn(x)—f(x]

xe[a,b]

nx nx
= sup

xe[a,b]

— 0‘ = sup

xe[a,b]

1+n’x? 1+n’x?

. nx o
Let us find the maximum value of ——— by second derivative test.

1+n°x

nx

Let @(x)=

1+ n’x?

() — (1 + nzxz)n—nx.2n2x
#) (1 +n’x? )2

Put ¢'(x)=0.
Then we have, (l +n’x? )n - nx(2n2x): 0

(1 + nzxz) = x(2xn2)

2.2 2.2 2.2
1=2xn"—-nx"=l=nx

1 1
= x’ =—=>x=1—
n n
1 1
or XxX=—or——.
n n

Also,
(1 +n'x’ )2 n (—2n2x) —n (1 —n’x? )(4n2x +4n'x’ )
(1 +n’x’ )4

"(x)=
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—2n3x(l +n’x? )2 -n (l —n’x? )(4n2x + 4n4x3)

(1 +n’x? )4

At x = l, ¢"(x)<0. Therefore d(x) is maximum when x =
n

1 |
AISO ¢(;] = E

Thus we take an interval [a,b] containing zero ,then

n

nx

1+ nx?

M, = sup =

n

f, (x)—f(x)‘ = sup

xe[a,b] xe[a,b]

which does not tend to zero as n —» «.

Hence by M, — test the sequence { £, } is not uniformly continuous in any interval containing zero.

Example 2. Show that the sequence { £, }, where

/,(x)

- converges uniformly on R.

1+ nx

Solution. Here pointwise limit is

f(x)=lm——=0V xeR.

n—o | +nx
Let ¢(x)= £, (x)- /()=

For maximum & minimum of ¢(x) , we have

1+ nx* = 2nx*

Px)=0———=0
() (1+nxz)2
1—nx’ ) 1
=5 ——=0=1l-mx"=0=>x=1t—.
(lJrnxz)2 \/;

1-nx’ —(1+nx2) 2
Now, ¢@'(x)= = )
o (P(X) (1+11362)2 (1+nxz)2+(1+nxz)2
_ 1 N 2
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Put x=L,

In
gp,,(ljzf 8\/—\/_\/— n

)"
¢”£L] =—Ve maximum.

Jn
U\n 1
L+n(l/n) 2Jn’

()= 1 (x)

Y o= =1
1+ nx’ O‘ Svlelzle)|¢(xX A\/;

=0

22 2 2 2

Hence max. (o( )

Thus M, =

XeR

= sup

xeR

Also so lim M,

n—»o0 n—>o 2\/_

Hence by M, — test, the sequence {f,(x)} uniformly converges on R.

Example 3. Show that 0 is a point of non — uniformly convergent of the sequence {f, (x)}, where

f.(x)=nxe™;x>0.

Solution. Here pointwise limit,

n—»0

flx)= li_I)l; £, (x) = limnxe™ {2 form}.

By L’Hospital rule, we get

=0

n—»0 xenx

For maximum & minimum value of ¢(x) , where

¢(x) =/, (x)— f(x) — e ™

¢'(X) = nx(— ne ™ )+ ne ™™

Now #(x)=0=-n’xe™ +ne” =0
-ne™™ 1 1
X = 2 —nx =-=x=—
-n‘e™ n n

Now ¢"(x)= —nzx(— ne_’”)+(—nze_"x)+(—n
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— n3xeﬂ1x _2n287nx

2 2
p(L)owtl 2w
n e

e e

¢"(x) =-ve i.e., maximum at x = —
n

1 1
Hence max. of ¢(x)=n—e" ==,
n e

Thus M, =sup

xeR

1,x)= 1 (x)

= sup‘nxe’"" - 0‘ = sup|¢(xj = é

XeR XeR

So limM, =limt =1 %0

n—»0 n— e e
Hence by M, —test, the sequence of function is not uniform convergent on R.

Weierstrass contributed a very convenient test for the uniformly convergence of infinite series of
functions.

Theorem 2 (Weierstrass M-test). Let (f ) be a sequence of functions defined on E and suppose
‘fn (x)‘ <M, (x€E,n=1,2,3,......), where M_ is independent of x. Then an converges uniformly
as well as absolutely on E if ZMD converges.

Proof. Absolute convergence follows immediately from comparison test.

To prove uniform convergence, we note that

f . (x) +f ., (x) .ot f (X)‘

<M

+M, ,+..+M .

n+1 n+2

But since ZMH is convergent, given e > 0, there exists N (independent of x) such that

M, +M,,, +..+ M, |<e, n>N.

n+l n+2

Hence

‘Sm(x)—Sn(x)‘<s, n>N, xeE
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and so Zf converges uniformly by Cauchy criterion for uniform convergence.

. . ~=cosnf
Example 4. Consider the series Z -— - We observe that
n
cosnf L
n’ n’

Also, we know that Z— is convergent if p > 1. Hence, by Weierstrass M-Test, the series ZCOS n

sinn0

converges absolutely and uniformly for all real values of 0 if p > 1. Similarly, the series Z .
n=1 n

converges absolutely and uniformly by Weierstrass’s M-Test.

Example 5. TakingM_ =r1", 0 <r < 1, it can be shown by Weierstrass’s M-Test that the series

Zr“ cosnb, Zr“ sin no, Zr“ cos” no, Zr“ sin” n@ converge uniformly and absolutely.

0

Example 6. Consider z; xeR.

n=l 1’1(1+1’]X2)’

We assume that x is positive, for if x is negative, we can change signs of all the terms. We have

f (x)= n(%nxz) and f '(x)=0implies nx’ = 1. Thus maximum value of f, (x) is rlm
Hence f (x) < L
n - 2n3/2

o0

Since Z T is convergent, Weierstrass’s M-Test implies that z is uniformly convergent

ol n(1+nx2)

forall xeR.
Example 7. Consider the series Z—z, x € R. We have

o=l (n+x°

X
f,(x)= ;
(n+x )
(n+x ) —2x(n+x )2x

and so f '(x)= xv
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x*+n? +2nx? —4nx* —4x* =0
n?-2nx?-3x*=0
3x*+2nx*=n*=0

, n n
X" =—orx=,|—.

3 3

1. .
> 1s convergent, 1t

Also f, "(X) is negative. Hence maximum value of f (X)is fi Since Z 3
n

6n3/2

follows by Weierstrass’s M-Test that the given series is uniformly convergent.

n

a_x = a x"
2n and Z 2n
1+x —1+x

Example 8. The series Z

n=l
converge uniformly for all real values of x and Zan is absolutely convergent. The solution follow the

same line as for example 7.

Lemma 1 (Abel’s Lemma). If v,, v,,....,v_be positive and decreasing, the sumu,v, +u,v, +....+u_v,
lies between Av, and Bv,, where A and B are the greatest and least of the quantities

u,u, +u,,u, +u, +u,,...,u; +u, +...+u

n

Proof. Write

S, =u,+u,+...4+u,.
Therefore

u, =S,u,=S,-S,....,u, =S -S|,
Hence

n
Z:uivi =u, v, +u,v, +...+u v,
i=1

=SV, +(S, =SV, +(S; =S,)vy +.... +(S, =S, )V,
ZSI(VI—V2)+Sz(V2—V3)+ ..... +Sn—l(Vn—1_Vn)+SnVn
<AV, =V, +V, = Vi Han AV, -V V).

=Av,.

Similarly, we can show that

n
Zuivi > Byv,.

i=1

Hence the result follows.
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Theorem 3 (Abel’s Test). The series Zun (X)vn (X) converges uniformly on E if

n=1

(1) {Vn (x)} is a positive decreasing sequence for all values of x € E
(i1) Zun (X) is uniformly convergent
(iii)  v,(x) is bounded forall x € E, i.e., v,(x) <M.

Proof. Consider the series Zun (X)Vrl (x), where {Vn (X)} is a positive decreasing sequence for each

x € E. By Abel’s Lemma

u, (X)Vn (X)+un+1 (X)Vn+1 (x)+....+um (X)Vm (x)‘ <Av, (x),

where A is greatest of the magnitudes

u, (x)

Clearly A is function of x.

) geeeey

u, (x)+u,, (x) u, (x)+u,, (x)+.tu, (x)‘

Since Zun (X) is uniformly convergent, it follows that

u, (x)+u,, (X)+..+u, (X)‘ < ﬁ foralln>N, xe€E

and so A< ﬁ for all n > N (independent of x) and for all x € E. Also, since {Vn (x)} is decreasing,

v, (x) <v,(x) <M since v, (x)is bounded for all x € E

Hence

u, (X)) v, (%) +u,, (X)) Ve (X) +otuy, (X) v, (x)‘ <e

forn>Nandall xe€E and so iun (X)Vn (x) is uniformly convergent.

n=1

Example 9. Consider the series

iﬂ X2

p 2n”
= n® 1+x

-1)
We note that if p > 1, then Z% is absolutely convergent and is independent of x. Hence, by
n

Weierstrass’s M-Test, the given series is uniformly convergent for all x e R.

n

(=1)

IfOSpSl,theseriesZ .
n

is convergent but not absolutely. Let
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X
VH (X): 1+X2n

2n

Then (v, (X)> 1s monotonically decreasing sequence for |x| < 1, because

XZn X2n+2
v (x)-v_, (x)= -
n( ) n+l( ) 1+X2n 1+X2n+2
X320 (1 —x2 )
= (+ve)
(1+x™)(1+x7")
XZ
Also v, (x)= <1.
1 ( ) 1+x°
() o
Hence, by Abel’s Test, the series Z—p T is uniformly convergent for 0 <p <1 and [x|<1.
n=1 1 +X
Example 10. Consider the series Zan.lx—%, under the condition that Zan is convergent. Let
+X
XH
v, (x)=
n ( ) 1+ X2n
Then
v, (X) ~ 1+ X2n+2
Voa (X)) x(T+x)
and so

Vn+1 (X) X(1+X2n)

v, (X) . (I—X)(I—inH)

which is positive if 0 <x < 1. Hence v, > v_,, and so (v, (X)) is monotonically decreasing and positive.

n+l

n

. . ) S
— is bounded. Hence, by Abel’s test, the series Zan. T is uniformly convergent
+X +X

in (0, 1) if Zan is convergent.

X

Also v, (x) =

‘ ‘ nx"" (1-x) .. :
Example 11. Consider the series Zan T under the condition that Zan 1s convergent. We
-X
have
nx"" (l—x)

Vn(x):

1-x"

Then
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v, (X) ~ n I_Xn+l
via(x) (+Dx (1-x")

Since

— 0 as n — oo, taking n sufficient large
(n+1)

Wl _(1-x)
Vn+l(X) (I_Xn)

Hence <v,(x)> is monotonically decreasing and positive. Hence, by Abel’s Test, the given series
converges uniformly in (0, 1).

>1if0<x<I.

Theorem 4. (Dirichlet’s Test for uniform convergence). The series Zun (X)Vn (x) converges

n=1

uniformly on E if
(1) {Vn (X)} is a positive decreasing sequence for all values of x € E, which tends to zero

uniformly on E

(i1) Zun (X) oscillates or converges in such a way that the moduli of its limits of oscillation

remains less than a fixed number M for all x €E.

Proof. Consider the series » un(x)va(x) where {Vn (x)} is a positive decreasing sequence tending to
n=1

zero uniformly on E. By Abel’s Lemma
u, (x)v, (x) +u,,, (X)Vn+l (x) +...tu (X)Vm (x)‘ <Av, (x),
where A is greatest of the magnitudes

u, (x) Ju, (x)+u,., (x)

and A is a function of x.

u, (%) + U, (%) + oy, (X))

) geeeey

Su, (x)

T

<M forall xeE,

Since Zun (X) converges or oscillates finitely in such a way that

therefore A is less than M. Furthermore, since v, (x) — 0 uniformly as n — o, to each £ >0 there

exists an integer N such that

Vn(X)<ﬁ foralln>Nand all x € E.

Hence

u, (X)Vn (x) +u,,, (X)Vn+1 (X) +o.tu, (X)Vm (x)‘ < IVE M=¢

foralln>Nand x € E and so zun(X)Vn(X) is uniformly convergent on E.

n=1
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Another way of Dirichlet’s Test for uniform convergence with proof.

Statement. If {Vn (x)} is a monotonic function of x for each fixed value of x in [a,b] and {V” (x)}

converges uniformly to zero for @ < x < b and if there is a number M > 0 s.t.
2.0, ()
r=1

Proof. Since {Vn (x)} converges uniformly to zero thus for any & > 0,3 an integer N (Independent of x)

s.t. for all x €[a,b]

<MVn&xe [a,b] , then the series ZVn (x)Un (x) is uniformly convergent on [a,b].

LetS, =Zn:Ur(x)‘v’n & x €[a,b]

r=I1
so that ‘Sn (x)‘ SMYV i, (2)

n+p

Now consider Z v, (x)Ur (x) =V ., ()C)Un+1 (x) o +V,., (x)Un+ » (x)

r=n+l

=Van (x)[SrH—l - Sn]+ Vn+2 (x)[Sn+2 - Sn+1 ]+ “““““ + Vn+p (x)':Ser - Sn+p—1:|

=V, ()8, +[ Vs () =Y,y (x) ]S,y +orreerre [Vt )V, ()] S,y + Vo (%)S,,

n+p-1

= SV ) @S, ()=, (1)S, (1) 4V, (6)S,, (3)

r=n+l

=

8160 (6] E 10 s O . el s,

n+p-1 e e
< V. -V, M+—M+——MYV n>N By (1)&(2
,:,,H| ()Y ()M 4 M MY (By (1)&(2))

=MV

:I/n+l(x)‘+

Voo ()45

<M i+i +£
AaM AM | 2
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n+p

Hence by Cauchy Criteria, the series ZV, (x)U, (x) converges uniformly on [a,b].

r=n+l

Remark 1. The statement

S, (v)

r=l1

<K Vxe [a,b] &V n is equivalent to saying that the sequence of

partial sum of series ZUn (x) is bounded for each value of x e [a,b] i.e, for every point x, €[a,b],

’iUr(xi)

r=l1

there is a number £, such that <k, and there exists a number k suchthat k, <k V i.

This fact is also stated as the partial sum of the series is uniformly bounded.

This, in turm is equivalent to saying that the series Zun (x) either converges uniformly or oscillates

finitely.
So Dirichlet’s test can be states also as “If V, (x) is a monotonic function of n for each fixed value of x

in[a,b]and V, (x) converges uniformly to zero for x [a,b] and if ZUH(X) either uniformly converges

to zero or oscillates finitely in [a,b]. Then the series ZVn (x)Un (x) is uniformly convergent on [a,b].

Cosng Sinng
and Z >

Example 12. Prove that the series Z >
n

converges uniformly for all values of p > 0

in an interval [a,27z - a] forO<a<r.

Solution. When, p > 1, By Weierstrass M-test at once prove both the series uniformly converge for all
values of ¢.

When 0< p<1, U, =Cosr¢

Take b, :ip and U, = Cosn¢g or (Sinn¢)
n

Then by Dirichlet’s test — Is positive and monotonic decreasing and uniformly tending to zero with

n
U,
r=1

Zn: Cosng

r=1

= |COS¢ +Cos2@+.............. + Cosn¢|

_ Sinn % Cos (Ist.angle + Last.angle)
Sin % 2 ‘
Sinn % Cos (¢ + n¢)‘

Sin% . 2 ‘

<Co sec%Vn (- |Sinn(0£1| and |C0$(p£1|).




Mathematical Analysis 57

Cosng and zSinngb

Thus all the conditions of Dirichlet’s test are fulfilled and the series Z > >
n n

converges on [a,27z - a’] .

2.6 Uniform Convergence and Continuity

We know that if f and g are continuous functions, then f + g is also continuous and this result holds for
the sum of finite number of functions. The question arises “Is the sum of infinite number of continuous
function a continuous function?”. The answer is not necessary. The aim of this section is to obtain
sufficient condition for the sum function of an infinite series of continuous functions to be continuous.
Theorem 1. Let (f ) be a sequence of continuous functions on a set E < R and suppose that (f )
converges uniformly on E to a functionf : E — R . Then the limit function f is continuous.

Proof. Let c € E be an arbitrary point. If ¢ is an isolated point of E, then f is automatically continuous at
c. So suppose that ¢ is an accumulation point of E. We shall show that f is continuous at c. Since f, — f

uniformly, for every € > 0 there is an integer N such that n > N implies

f

n

(x)_f(x)\<§ forall x €E.

Since f,, is continuous at c, there is a neighbourhood S;(c) such that x € S;(c¢) NE (since ¢ is limit

point) implies

By triangle inequality, we have

I£(x) = £ ()| =|f (x) =y (x) + £y (x) = £y (¢) + £y, (c) = £(c)|

Hence
‘f(x)—f(c)‘ <g,xeS;(e)NE
which proves the continuity of f at arbitrary point c € E .

Remark 1. Uniform convergence of (f ) in above theorem is sufficient but not necessary to transmit

continuity from the individual terms to the limit function. For example, let f : [0,1] — Rbe defined for
n=>2 by
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n’x for OSXSl
n
f (x)= —nz(x—zj for L<x<2.
n n n
0 for %Sxﬁl
n

Each of the function f is continuous on [0, 1]. Also f, (X) — 0 as n — oo for all x E[O, l]. Hence the

limit function f vanishes identically and is continuous. But the convergence f — f is non-uniform.

The series version of Theorem 1 is the following:

Theorem 2. If the series an (x) of continuous functions is uniformly convergent to a function f on

[a, b], then the sum function fis also continuous on [a, b].

Proof. Let S: (X)= zfi (x)}neNgnd lete > 0. Since an converges uniformly to f on [a, b], there

i=1

exists a positive integer N such that

S, (x)—f(x)‘<§ forall n>Nand x €[a,b] 1).
Let ¢ be any point of [a, b], then (1) implies
‘Sn (c)—f(c)‘ <§ for all n>N (2).

Since f_ is continuous on [a, b] for each n, the partial sum

S, (x) =1 (X)+ f, (x)+ S i (x)

is also continuous on [a, b] for all n. Hence to each € > 0 there exists a 6 > 0 such that

S, (x)-S, (c)‘ <§ whenever [x —¢[ <8 3).
Now, by triangle inequality, and using (1), (2) and (3), we have
I£(x)=f(c)|=|f(x)-8, (x)+8,(x)=S, (c)+8, (c) - f(c)

<[f(x) =S, (x)|+[S, (x) =S, (c)|+[S, (c) - f(c)|

€ € ¢
<§+§+§=8,whenever |X—C|<8.

Hence f is continuous at c¢. Since c is arbitrary point in [a, b], f is continuous on [a, b].

However, the converse of Theorem 1 is true with some additional condition on the sequence (f ) of

continuous functions. The required result goes as follows:
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Theorem 3. (Dini‘s theorem on uniform convergence of subsequences (first form)). Let E be
compact and let {fn}be a sequence of functions continuous on E which converges to a continuous

function fon E. If f (X) >f (X) forn=1,2,3, ..., and for every X €E, then f — f uniformly on E.

Proof. Take

Being the difference of two continuous functions g, (X) is continuous. Also g, -0 and g, >g ., . We

shall show that g — 0 uniformly on E.

Let € >0 be given. Sinceg, — 0, there exists an integer n > N such that
‘gn (x)—O‘ <g/2

In particular
‘gNX (x)—O‘ <g/2

ie. 0<gy (x)<8/2.

The continuity and monotonicity of the sequence { g, } imply that there exists an open set J(x) containing
x such that
0<g, (t) <g
ifteJ(x) andn>N .
Since E is compact, there exists a finite set of points x,, X,,....,X,, such that
Eclx,)uvl(x,)u..ul(x,).
Taking
N= maX{NX] Ny e N }
it follows that
0<g,(t)<e
forall te Eand n> N. Hence g, — 0 uniformly on E and so f, — f uniformly on E.
Theorem 4. If a sequence { £, } of real valued function converges uniformly to f'in [a,b] and let x, be a

(n:1,2, ......... ) .

no

point of [a,b] s.t. lim f, (x)=a,;
Then (i) {a,} converges.

(i) lim f(x)= lima,.

X*).XO
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i.e, limlim £, (x)=limlim £, (x).

X*).‘CO n—»0 n—>0 X*).‘Co

Proof. (i) The sequence { fn} converges uniformly on [a,b] .Therefore for ¢ >0 , there exists an

integer m (independent of x ) s.t. for all x € [a,b]

fop (%) —f(x)‘ <g&V n>m,p>1 (By Cauchy’s Criterion).

Keeping n, p fixed and tending x — x,,, we get

an+p—an‘<8 Vnzm,p21
So that {an } is a Cauchy sequence and therefore converges to A.
(ii) Since {f,} converges uniformly to f.

Thus for givene > 0 , there exists an integer N, s.t. for all x € [a,b].

‘fn(x)—f(x)‘<% V nxN, (1)

Now the sequence {an } converges to A. So there exists an integer N, s.t.

an—A|<8§ V n2N, (2)

Now take a no. N such that N = max.{Nl,Nz}

Since we have ,

In particular, lim £ (x)=a,
= for €>0,3 a & > 0 such that
fv(x)=ay| <84 whenever [x—x,|<& (3)
Jx)=A=[f )+ £y ()= £y () =ay +ay -4
<|f )= f )+ fw )= ay| +lay -4

Now,

<Z184% ¢ Whenever |x—x0| <o
3 33
= lim f(x) exists and is equal to A.

X*)XO

Thus lim f(x)=lima, = 4.

x~>x0 n—>»0

Hence the Proof.
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Theorem 5. If a series Z f, converges uniformly to f in [a,b] and x, is a point of [a,b] such that

n=1

lim £, (x)=a,;(n=1,2cceec..... )

X*)XO

Then (i) ) a, converges

n=l

(i) tim f(x)=Ya,

X=X
n=1

Proof. (i) Given that the series z f,, converges uniformly on [a,b], for given & >0, there exists an

integer m such that for all x €[a,b]

n+p

>

r=n+1

<eVnzmpz21

(By Cauchy’s Criterion)

Keeping n,p fixed and taking the limits x — x,, we obtain

"j’far(x){q

r=n+l

= the series Zan converges to A.

(i) Since the series Z f, converges uniformly to f, therefore for &> 0, there exists an integer N,

n=1

such that Vx € [a,b], we have,

gfr(x)—f (x)

<§Vn2N1 ..................... 1)

Again Zan converges to A.

= for € >0, 3 N, such that

Also it is given that
lim £, (x)=a,;(n =12,......... )

X=X

= for the given £ >0,3 a §, >0 such that fori=1,2,........
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f,(x)-a,

<£ |x—x0|<5i

Such that 3N Whenever

If we take & = min {S,, 8, ,.rvvenr ... 5}, then we have

f,(x)-a,

< for |x—x0| <0
3N

N

Zf,(X)—rZia,

r=l1

Thus

N
<3
r=1

f,(x)—ar <N.%:§ ............ (3)

Now for|x—x0| <0, we have

Using (1),(2) & (3) , we get
‘f(x)—A‘ <&

= lim f (x) exists and is equal to A.

X=X

We have seen earlier that if sequence {f,} is a sequence of continuous functions which converges

pointwise to the function f, then it is not necessary for f to be continuous. However, the concept of
uniform convergence is of much importance as the property of continuity transfers to the limit function
if the given sequence converges.

Theorem 6. If the sequence of continuous function { fn} is uniformly convergent to a function f on

[a,b] then f is continuous on [a,b].
Proof. Let £ >0 be given.

Now given that sequence { £, } is uniformly convergent to f on [a, b], then there exists a positive integer

m such that

fn(x)—f(x)‘<§‘v’n2m&Vxe[a,b] (1)

Let x, be any point of [a, b].

In particular then from (1),
fn(x()—f(x()|<%Vn2m 2)

Now f, is continuous at x, € [a,b].So, there exists o > 0 such that
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£()= 1) <5 whenever [x—x| <& (3)
Hence for [x—x,| < 5, we have

1) = e ) =1 ()= £, )+ £, )+ £, v ) = £, ()= £, )

<7 ()= 1, ()1, ()= 1, (e £, (v ) = £, )

<§+§+§=g (from (1), (2)& (3))

We get |f(x)—f(xo)‘ < & whenever |x—x0| <0
Hence f is continuous at ™ [a,b]

= fis continuous on [a,b].

Theorem 7. If a series Z /. of continuous function is uniformly convergent to a function f on [a, b],

n=1

then the sum function f'is also continuous on [a, b].

Proof. Since the series Zf » converges uniformly on [a, b] to fon [a, b].

Thus given € >0 we can choose m such that

27001

Let xo be any point in [a,b], then from (1),we have n=N

gn(xo)—fm)

Now it is given that each f; is continuous on [a,b] and in particular at x,.

for all x €[a,b] < gVn > m. (1)

<§Vn2m (2)

Hence € >0 there exists © > 0 such that

Zfr (x)_Zfr (xo% <§ whenever |x—x0| <6 (3)

r=1 r=1

Hence for |x—x0| <9,

ORI RIS WIS WACE WA WA
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WACIEE

Thus from (1), (2) & (3) , we get

<

& & ¢
<T4+T4+Z=¢
3 3 3

=|f(x)-f(x) <&
— fis continuous at x¢ on [a,b]. Since X, was chosen arbitrary.
Hence the proof.

Remark 1. (i) Uniform convergence of the sequence {/,} is sufficient but not a necessary condition for
the limit function to be continuous. This means that a sequence of continuous functions may have a

continuous limit function without uniform convergence.

However the above theorem yields a negative test for uniform convergence of a sequence namely “If the
sequence of continuous functions is discontinuous, the sequence cannot be uniformly convergent.”

(i1) The same argument hold good in the case of infinite series Z Ia.

n=1
The following examples illustrate the same:
(1) The sequence {x ! } of continuous functions has a discontinuous limit function f which is given by
0, if 0<x<l1
f(x)=1,"
L, if x=1
Then the sequence cannot uniformly convergent on [0, 1].

nx

m} of continuous functions has a continuous limit function but the given

(2) The sequence {

sequence is not uniformly convergent.

(3) The sum of the functions of the series z (1 - x)x " of the continuous functions.

n=1

L i x#0
f(x)_{o, if x=0

which is discontinuous on [0,1]. Therefore the series is not uniformly convergent on [0,1].

Note 1. (l—x)ix”=(1—x)(l+x+x2+ ........... )
n=1
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~(-9) )1

Some important results

Here we state some results which we shall use in the following theorems & examples:

(1) Every monotonically increasing sequence bounded above converges to the least upper bound

(Lub.).

(2) Every monotonically decreasing sequence bounded below converges to greatest lower bound
(g.1.b).

(3) A real no. ¢ is said to be a limit point of a sequence {an } if given any € > 0 and a +ve integer

m, there exists a +ve integer k > m such that |ak -$ | <&,
(4) Every bounded sequence has a cluster point.

(5) If a seq. {an} converges to L or diverges to T 0 =% then every subsequence of {an} also
converges to L or diverges to T 07" —®.

(6) Consider the geometric series
a+ar+ar’ +...... +ar"™ + o,
This series
(1) converges ifr<1.
(i)  divergesto @ if 721
(ii1))  oscillate finitely if r = -1.
(iv)  oscillates infinitely if r <-1.

n—1

(7) Leibnitz’s Rule. The alternative series Z(_ 1) 4, is convergent if

n=l1
(1) an+1 < an Vn
(ii) a, >0 435 n >0
(8) For every limit point of a sequence we can form a subsequence converging to limit point. Limit
point is also called subsequential limit.

Theorem 8 (Dini’s theorem on uniform convergence of subsequences(2" form)). If a sequence of

continuous function {f n} defined on [a,b] is monotonically increasing & converges pointwise to a
continuous function f, then the convergence is uniform on [a,b].
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Proof. The sequence {f n } is monotonically increasing and converges to f on [a,b].
Therefore, for any € > 0 and for a point X € [a,b] there is an integer N s.t.

0< f(x)—f,(x)<e V=N (1)
We consider R, = /()= £,(x) ;s n=12,....

Since the sequence {fn } is monotonically increasing. So, the seq. {Rn (x )} is monotonically decreasing.

ie, R(x)2R,(x)2R(x)>......... >R, (x) (2)

Also, the sequence {Rn (x )} is bounded below by 0.

Hence the seq. {Rn} converges pointwise to 0 on [a,b].

We claim that this convergence is uniform.
Suppose if possible for a fixed @0 > 0.3 no integer N which works for all X € [a,b]_
Then foreachn=1,2,3,......... , there exists *, € [a»b] such that

R, (x,)>a, (3)

The seq. {xn} of points belonging to the interval [a,b] is bounded and thus has atleast one limit say ‘g
in [a,b].

Consequently, we can assume that there is a subsequence {xnk } of seq. {xn } converges to ‘g
ie, X, >& as k>
Now the function,

R, (x) =f (x)— 1 (x) is continuous being the difference of two continuous functions and thus for
every fixed m, we have

limR,(x, )= R, (&) vx, > & ag k>0
Now for every m and any sufficiently large k, we have

n, 2m,k>m

Since {Rm} is a decreasing sequence, we have
R,(x, )= R, (v, )2 a, (from (3))

=R, (xnk )2 a,

But this is contradiction to the fact that sequence {Rm} converges pointwise to 0 i.e.,



Mathematical Analysis 67
limR,(£)=0

n—x0

Thus the convergence must be uniform and this completes the proof.
Theorem 9 (Dini’s theorem on uniform convergence for series). If the sum function of a series

Zf » with non negative terms defined on an interval [a, b] is continuous on [a,b], then the series is

uniformly convergent on the interval [a, b].

Proof. Consider the partial sum of the given series
$,(x)=2/.(x)
r=1

Since all the function f, are non —ve . So, the seq. of partial sum {S n } should be increasing.
Therefore, S (x) <S8, (x) Vn

ie., {S n } is an increasing sequence of continuous functions converges pointwise to a continuous function
f. Hence by Theorem 8, the sequence {S n} converges uniformly and the given series is also uniformly
convergent.

This completes the proof.

Example 1. Show that the series
s, x x*

X"+ o+ 7
I+x ﬁ+x

is not uniformly convergent on [a,b].
Solution. The terms of the given series are quotient of two polynomials and hence continuous (Since

the polynomials are continuous and quotient of two continuous function is continuous).

Now, Let us find the sum function for the given series. Let, A (x) denotes the sum function of the given
series.

! 1
v 0,1
1+x* and|1+x4|< xe[ ’]'

If X# 0 then the series is a geometric series with common ratio

Hence the sum function is given by

f(x):x—lzl+x4
1—
1+x*
1+x* if x#0
s, /(9={y"

which is discontinuous on 0 and hence on [0,1] . So, the series cannot converge uniformly on [0,1].
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nx + 1){(11 - l)x + 1}

Example 2. Show that the series Z ( is uniformly convergent on any interval [a, b],

0 <a <b, but only pointwise on [0, b].

X 1 1

Solution. Let ./, (x)= (x+ (- +1} (n—lx+1 me+l

Therefore n partial sum is

Sn(x):’if,,(x)=fl(x)+f2(x)+ .......... + £ (x)

1 1 1 1 1
=1- + - F oo + -
x+1 x+1 2x+1 (n—l)x+1 nx+1

1
nx +1

=1-

The sum function J (x) =1im§, (x)

n—>00

= lim(l _ ! j
1o nx +1

1 if x+0
“lo,  if x=0

Clearly fis discontinuous at x = 0 and hence discontinuous on [0, b].
This implies that the convergence is not uniform on [0, b] i.e, it is only pointwise.

Now take the interval [a,b] such that 0 < a <b, then the given series is uniformly convergent on [a,b] if
for given € >0

S, x)-flx)= <¢
5,09 )=

11
ie, if n>—|—-1

x\¢&

1 1 . . . . .

Now, T ;_1 decreasing with x and its maximum value is
l(l—lJ =m
o\ z o (say).

If we take ™ > M, then for all X € [a,b]

n

S (x)—f(x)‘<8 Vn>m.
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Hence the series converges uniformly on [a,b] s.t. 0 <a <b.

1)

Example 3. Show that the series Zﬁ is uniformly convergent but not absolutely for all real
n=l1

values of x.

Solution. The gi ics i i(_l)n_l
olution. c glVen Series 1S — 7/l+x2 .

1
Let 4, = 2

an+1 < anvn and an - 0 as n— 0 .

e

-1
_ 1)"
2 is convergent.

Hence by Leibnitz’s rule, the alternative series Z et x
n=l1

We know that a series Z a, is said to be absolutely convergent if the series Z a,| is convergent.

n=1 n=1

()| < 1

=
n+x‘ on+Xx

o0

Now, Z

n=1

> which behaves like Z % and hence is divergent.

It remains to prove that the given series is uniformly convergent.

Let S, (%) denotes the partial sum and S (x) denote the sum of the series.

Now, consider

IS PR A S B o
2 1+x° 2+x7 3+x° 4+x* 2n+x?
1 1 1 1 1 1
=35,,(x)= - + - F o + -
2n (%) (lﬂc2 2+x2j (3+x2 4+x2j ((2rz—l)+x2 2n+x2J

Now, note that each bracket in the above expression is positive. Hence 52 (x) is positive and increasing

to the sum S (x)
= S(x)-85,,(x)>0

S(x)-S — - — ...
Also S(x)=$,,(x) Qn+1)+x (2n+2)+x2+(2n+3)+x3
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1
) (27 +1)+x?

1

< .
2n+1
1
So, 0<8(x) =5y, (x) < — (1).
Also, consider
1 1 1
S2n+1(x)_S(x = —eeeeeeeeeeeens

1 1
S2n+1(x)— ( )<(2n+2)+x 2n+2
1 1
:>0<S2n+1(x)—S(x)<2n+2<2n+1 (2).

Inequality (1) & (2) yield that for any € >0

we can choose an integer m s.t. for all values of x.

‘S(x)— S, (x)‘< EVnzm

= The series converges uniformly for all real values of x.

Example 4. Consider the seq. {.fn } where

L=

1+n°x?

Show that the sequence of differentiable functions {f n} does not converge uniformly in an interval

containing zero.

nx

1+ n’x?

= f(x)=lim f,(x) =0

Solution. Here /. (x )

= f'(x)z 0 for all real x
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' _(1+n2x2)n—2nx.n2x_n_3 1/ n*+x>=2x2
Now, S (X)_ (1+712x2)2 o (1/712+)c2)2

Now lg&fn'(x):o for x#0
Thus lim 7,'(x) = £"(x)
But at x=0; fn'(x):” and llqi_r)gfn'(O):oo

Thus at * =0; f'(x);t lim f, '(x)_

n—o

Hence the sequence /' does not converges uniformly in an interval that contains zero.
2.7 Uniform Convergence and Integrability.

We know that if f and g are integrable, then I(f + g) = J. f+ J‘ g and this result holds for the sum
of a finite number of functions.

The aim of this section is to find sufficient condition to extend this result to an infinite number of
functions.

Theorem 1. Let a be monotonically increasing on [a, b]. Suppose that each term of the sequence

{f } is a real valued function such that f € R(a) on [a, b] for n =1, 2,.. and suppose f, — f uniformly

n

on [a, b]. Then f € R(a) on [a, b] and

b b
[ dou=1lim [£, dot,

b b
that is, jhm f (x) da(x) = lim_[fn (x) dou(x)

(Thus limit and integral can be interchanged in this case. This property is generally described by saying
that a uniformly convergent sequence can be integrated term by term).

Proof. Lete be a positive number. Choose 1> 0 such that

n[a(b)—a(a)}é% (1)

This is possible since a is monotonically increasing. Since f, — f uniformly on [a, b], to each n >0

there exists an integer n such that
f (X)—f(x)‘ﬁn, Xe[a,b] (2)

Sincef, e R (a ), we choose a partition P of [a, b] such that
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U(P,fﬂ,oc)—L(P,fn,oc) <=

The expression (2) implies
£ (x)-n<f(x)<f, (x)+7
Now f(x)<f, (x)+n implies, by (1) that
U(P,f,a)<U(P,f,,0)+=
Similarly, f(x)>f (x)—n implies

L(P f OL) L(P,fn,(x)

Combining (3), (4) and (5), we get
U(P,f,oc)—L(P,f,oc) <eg

Hence f e R (o) on [a, b].

)

(4)

©)

Further uniform convergence implies that to eache > 0, there exists an integer N such that n > N

€

f (x)—f(x)‘ < [
Then for n > N,

£T|f—fn|da

a

T(f—fﬂ)da

a

b b
[fda—[f, dof=

[oc(b) o ]J.doc
s[oc(b) ]
a(b)- O‘()

jfda_hmjf dot

n—oo

Hence

and the result follows.

The series version of Theorem 1 is

Theorem 2. Let f e R ,n=1,2

b

a(b)-a(a)]

IS [a,b]

, ... If an converges uniformly to fon [a, b], then f € R and

w b
jf(x) do = ZIfn (x) da i.e., the series an is integrable term by term.
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Proof. Let (S, ) denotes the sequence of partial sums of an . Since an converges uniformly to f on

[a, b], the sequence (S, ) converges uniformly to f. Then S  being the sum of n integrable functions is
integrable for each n. Therefore, by theorem 1, fis also integrable in Riemann sense and

f X—hij

n—oo
a

(x)dx—jf (x)dx+jf (x)dx+ +'[f (X)dx
=2Ifi(x)dx

i=l 3

But

o
I

T f(X)dX=1imMiZ::jfi(X)dX
DL

i=1

fi(x

D ey

and the proof of the theorem is complete.

Example 1. Consider the sequence (f,) for which f, (X) = nxe_nXZ , heN, xe [O, 1] . We note that

f(x) =limf (x)

n—»owo

nx

=11££101 PN =0, xe(O,l]
+ ' + X o
Then
1
If(x)dx:O
0
1 1 ,
an(x)dx = Inxe “™dx
0 0
1r -
:51').6 tdt, tZI’IX2
1 n
25[1‘6 ]
Therefore

hmJ.f dx—hml[l—e_n] :%.

n—oo n—w )
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1
If (f,) were uniformly convergent, then jf ( dx should have been equal to llmIf

n—ow
0

But it is not the case. Hence the given sequence is not uniformly convergent to f. In fact, x = 0 is the
point of non-uniform convergence.

Example 2. Consider the series Z(— This series is uniformly convergent and so is integrable
n=1 (n+x

term by term. Thus

i Z—) S

n=l o n+x)

—hmZI n+x’) dx

.1 1 1 1 1 1
=lm—||l-=|+| === |+.4| ———
i3l (-2 (53|
zllml(l—L]:l

m— ) m+1) 2

(n—1)x ,
(1+n ’) (1+(n—1)2x2)

Let S, (x) denote the partial sum of the series. Then

a<x<l.

Example 3. Consider the series z

and so f(x)=1imS, (x)=0 forall x [0,1]

n—o

As we know that 0 is point of non-uniform convergence of the sequence (S, (x)), the given series is not

uniformly convergent on [0, 1]. But
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and an (x) d)(zj.L dx
0

Hence

lim | S, (x)dx = limi[log(lJer )] [E fOrm)

n—oo 0 n—oo 2n o0

Thus

n—oo

o t——

1
£(x)dx =lim [S, (x) dx,
0

and so the series is integrable term by term although 0 is a point of non-uniform convergence.

Theorem 3. Let { gn} be a sequence of functions of bounded variation on [a, b] such that g_ (a) 0

b

and suppose that there is a function g such that
limV(g-g,)=0

and g(a) = 0. Then for every continuous function f on [a, b], we have

n—oo

lim'lff dg = liigjf dg

and g — guniformly on [a, b].

Proof. If V denotes the total variation on [a, b], then
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V(g)<V(g.)+V(g-g.)

Since g is of bounded variation and r111_)rr010V( g— gn) =0 it follows that total variation of g is finite and
so g is of bounded variation on [a, b]. Thus the integrals in the assertion of the theorem exist.

Suppose ‘f(x) < M‘ on [a, b]. Then
b

[fd(g-g,)

a

b b
jfdg-jfdgn

SMV(g—gn)

Since V(g - gn) — 0 as n — o, it follows that

b b

[fdg=1im [f dg,.
Furthermore,

‘g(x)—gn(x)‘SV(g—gn), a<x<b

Therefore, as n — c, we have
g — g uniformly.
2.8. Uniform Convergence and Differentiation

If f and g are derivable, then

d d d
o) ()] =)+ -g(x)
and that this can be extended to finite number of derivable functions.

In this section, we shall extend this phenomenon under some suitable condition to infinite number of
functions.

Theorem 1. Suppose {fn } is a sequence of functions, differentiable on [a, b] and such that {fn (XO )}

converges for some pointx, on [a, b]. If {f '} converges uniformly on [a, b], then {f |converges
g 0 n n

uniformly on [a, b], to a function f, and

f'(x)=limf,'(x) (a<x<Db).

n—ow

Proof. Let € > 0 be given. Choose N such that n = N, m = N implies

L (x0) = £ (%) <5 (1)
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and

1 1 8
fn (t)—fm (t)‘<m (aSt<b) (2)
Application of mean value theorem to the functionf, — £, (2) yields
(-1, ()+ £, (t)|

for any x and t on [a, b] if n =N, m = N. Since

f (x)—fm (x)‘ < ‘fﬂ (X)—fm (x)—fn (x0)+fm (XO )‘ +

the relation (1) and (3) imply for n>N, m>N,

B R 3)

f (XO)—fm (XO)‘.

f

n

(X)—fm(x)‘<8/2+8/2=8(aSX<b).

Hence, by Cauchy criterion for uniform convergence, it follows that { f } converges uniformly on [a, b].

Let
f(x)=limf, (x) (a<x<b).

n—oo

For a fixed pointx e [a,b] , let us define
f (t)—f (x f(t)—f(x
¢n(t)= n() n( ), (I)(t)_ () ( ) (4)
t—x
fora<t<b, t#x.Then
f —f
lim¢, ()—limwzf '(x) (n=1,2,...) (5)
t—>x t—>x —X

Further, (3) implies

0 (1) = (1) < 2(b8_a) n2N, m2N.

Hence {(I)n } converges uniformly fort # x . We have proved just now that {fn } converges to f uniformly

on [a, b]. Therefore (4) implies that
lim ¢, (t) = ¢(t) ©)

uniformly for (a <t <b), t # x. Therefore using uniform convergence of(¢, ) and (5), we have

lim¢(t)=limlim¢, (t)

t—>x t—=>X n—>w

=limlim¢, (t)

n—-o t—>x
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=limf, '(x).

n—oo

But ltirnq)(t) = f'(x). Hence

f'(x)=1limf, '(x).

n—oo

Remark 1. If in addition to the above hypothesis, each f ' is continuous, then the proof becomes

simpler. Infact, we have then

Theorem 2. Let (f ) be a sequence of functions such that
(i) each f is differentiable on [a, b].
(1) each f ' is continuous on [a, b].
(11) (f ) convergesto fon [a, b].

(iv) (f,") converges uniformly to g on [a, b], then f is differentiable and f, '(x) = g(x) for all
X € [a,b] )

Proof. Since each f ' is continuous on [a, b] and (f ') converges uniformly to g on [a, b], the

application of Theorem 1 of section 2.6 of this unit implies that g is continuous and hence Riemann
integrable. Therefore, Theorem 1 of section 2.7 of this unit implies

Jt.fn '(x) dx

t

[2(x) dx = lim

But, by Fundamental theorem of integral calculus,

t

i, (x)dx = £, (1)1, (a)

a

Hence
e(x) dx = lim[, (1)1, (a)]

n—owo
a

Since (f ) converges to f on [a, b], we have
limf, (t)=f(t) and limf (a)=f(a).

Hence

and so
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%@g(x) de _ (1)

or g(t)=£'(t), te[a,b].

This completes the proof of the theorem.

The series version of Theorem 2 is
Theorem 3. If a series an converges to f on [a, b] and
(1) each f, is differentiable on [a, b]
(i1) each f ' 1is continuous on [a, b]
(iii)the series an ' converges uniformly to g on [a, b]

then fis differentiable on [a, b] and f'(x)=g(x) forall x € [a,b] .

Proof. Let (S ) be the sequence of partial sums of the series an . Since an converges to fon [a, b],

n=l
the sequence (S, ) converges to f on [a, b]. Further, since an " converges uniformly to g on [a, b], the

sequence (S, ') of partial sums converges uniformly to g on [a, b].

Hence, theorem 2 is applicable and we have

f'(x)=g(x) forall x e[a,b].

. . nx (n—l)x
Example 1. Consider the series v~ . .
ool (1+n X ) (1+(n—1) xz)

For this series, we have

Sn(x)=ﬁ, 0<x<1

We have seen that 0 is a point of non-uniform convergence for this sequence. We have

. . nx
f(x)=lim$, (x) = }}E}om
=0 for0<x<lI.

Therefore

£'(0)=0
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sn'(O)zgigl;S“(0+h}2_S“(O)
= lim——— =
h—0 (1+n2h2)
Hence
limS, "(0)=o0
Then

f'(0) = 1limS, '(0).

n—o

) . <& sin nx
Example 2. Consider the series Z—3° x € R. We have

n=1

n
Thus
, COS NX
A ()=2"
n
) €OSs Nx 1 | ) . . .
Since —|<— and Z—z1s convergent, therefore, by Weierstrass’s M-test the series an (x) is
n n n

uniformly as well as absolutely convergent for all x € R and so an can be differentiated term by

term.

Hence (ifn) = ifn '

n=]

2. sin nx =, COS nNX
or 2 | =X

n=l 1 n=l 1
2.9 Weierstrass’s Approximation Theorem

Weierstrass proved an important result regarding approximation of continuous function which has many
applications in numerical methods and other branches of mathematics.

The following computation shall be required for the proof of Weierstrass’s approximation theroem.

For any p,q € R, we have, by Binomial Theorem
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Z(kqu —(p+q),,  nel, (1)

k=0

i

Differentiating with respect to p, we obtain

(7 -1 _n- n—
Z[k}w" ‘" =n(p+q),
k=0

where

which implies

k=0

Differentiating once more, we have

Zn:k—(njpqu” = p(n-D(p+9)"* +(p+9)""

i n\k

and so

= k2 n n—. 1 n— n—
_2( ]p"q =P -+ )+ 2 (p+ )
=0 1 k n n

Now if x €[0,1], take p=x and q = 1-x. Then (1), (2) and (3) yield

;{Z}vk (1-x)"" =1
Sy =
Bl er(=3):;

2
On expanding(E - xj , it follows from (4) that
n

Zn:[ﬁ—sz(';}k(l—x)”":x(l_x) 0<x<I

k=0 \ " n

For any f €[0,1], we define a sequence of polynomials {Bn }::1 as follows:

~k(n n— n—
E—[ jp"q “=p(p+q)", nel (2).
nlk

).

(4).

(5).
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Bn(x)zi&}wk(l—x)”"f(fj, 0<x<l nel (6).

k=0 n

The polynomial B, is called the nth Bernstein Polynomial for f.

We are in a position to state and prove Weierstrass’s Theorem.
Theorem 1 (Weierstrass’s Approximation Theorem). |f f j5 real continuous function defined on [a,b]

then there exists a sequence of real polynomials {P n } which converges uniformly to f(x) on [a,b]

ie., ’lli_r};Pn (x) = f(x) uniformly on [a,b].
Proof. If a =b, then f(x) = f(a).
Then, the theorem is true by taking £, (x ) to be a constant polynomial defined by

P(x)=f(a)Vn

Thus we assume that a <b

f= b—a is continuous mapping of [a,b] onto [0,1].

So, in our discussion W.L.O.G. we takea=0,b = 1.

n
Now we know that for positive integer n and k where 0<k<n_the binomial coefficients ( kj 1.e,

n n!
N, is defined as k =W

Now, we define the polynomial B, where
n n- k
)=} 0 (4] “

The polynomial defined in (*) is called Bernstain polynomial as shown in above equation (6).
We shall prove that certain Bernstain polynomial exists which uniformly converges to f on [0,1].
Now consider the identity

S e - <[] ()

k=0

[This is the binomial exp. of X + [1-x] ]

Differentiating w.r.t. X, we get
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Z[kj[kx (=) ==k (1=2)]= 0

k=0

- z[k]x (1= X (k= nx) = 0

Multiplying by x(1-x) yields

N z@[x (1-x)"" (k-nx)]=0 (2)

Differentiating again w.r.t. X, we get

n

z@[— e (1=x)"™ 57 (1= )™ (k= )] = 0

k=0
which on applying (1),we get
n n
> [xkfl (1—x)"""(k - nx)’ ] =n
o\ k
Multiplying by x(1-x), we get

i@xk (1-x)"™ (k- nx)’ = nx(1-x)

k=0

R j@xk (1=x)" (x_sz _x(1=x) 3)

k=0 n n

Since the maximum value of x(1-x) in [0,1] is Ya.
f(x) = x(l—x),f'(x) =1-2x
:f'(x)=0:1—2x=0
:>x=1/2:>f(1/2)=1/4.
So, (3) can be written as
w (1 O A
:;mxk(l-x) (x—;j < (4)
Now f'is continuous on [0,1]. So, fis bounded and uniformly continuous on [0,1].

=3 K>0 gych that

‘f(x)‘SK ‘v’xe[O,l]

and by uniform continuity for given € > 0, there exists 9 > 0 such that for all ¥ € [091].
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k
- ‘f(X) - f(;j

Now for any fixed but arbitrary x in [0,1], then n- values 0,1,2,........... ,n of k can be divided into two
parts as follows:

&

< 3 whenever <o (5)

X ——

<Jand B be the set of remaining values for which

Let A be the set of values of k for which x—;

X ——
n

>5

Now for kK € B we get by (4)

(o gl (ot

keB keB n

Now

(By (1))

-a61= 3 (st 0= - o(4)

k=0 n

We split the summation on R.H.S into two parts accordingly as

>0

X ——
n

X ——
n

<0 or

Thus we have

|/ (x)=B, (%)< Z(Zj & (1—x)

keAd

f (x)—f[fj

n

+;(Z]xk(l—x)k

< %Z(ijk (1-x)"" + 2Kz[l’jxk (1=x)™

keAd keB

g

2K
<—F—7<¢& n>——
2 ans? for all values of 5 -
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Thus {Bn (x)} converges uniformly to f(x) on [0, 1].

Hence the proof.

Examplel. If f is continuous on [0,1] and if J-x f (x)dx =0 forn=0,1,2,.......... Then show that f(x) =0
on [0,1].

Solution. Let P(¥)=ay +ax +a,x" +.ooov e +a,x" be a polynomial with real co-efficients defined

on [0,1], then

[ o)k~ S ok

o0 1 o0
- zanfx"f(x)dx =>a,0=0.
n=0 0 n=0

Thus the integral of product of f with any polynomial is zero.
Now, since f is continuous on [0,1], therefore by Weierstrass’s approximation theorem, there exists a
seq. {Pn} of real polynomial such that 7, = S uniformly on [0,1].

=p,f > s uniformly on [0,1]

Since f being continuous and bounded on [0,1], therefore
1 1
jfzdx = limJ.pnA.fdx =0
0 n—>»00 0

Therefore, /> (¥)=0 on [0.1],
Hence f(x) =0 on [0,1].
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POWER SERIES AND FUNCTION OF SEVERAL VARIABLES

Structure
3.0 Introduction
3.1 Unit Objectives
3.2 Power Series

3.2.1 Power series

3.2.2 Uniform convergence and uniqueness theorem
3.2.3 Abel theorem
3.2.4 Tauber theorem
3.3 Function of several variables
3.3.1 Linear transformation
e Euclidean space R"
3.3.2 Derivatives in an open subset E of R"
e Chain rule

3.3.3 Partial derivatives

e Continuously differentiable mapping
¢ Young theorem
e Schwarz theorem

3.4 References
3.0 Introduction

In this unit, we study convergence and divergence of a power series and applications of Abel’s theorem.
Tauber showed that the converse of Abel’s theorem can be obtained by imposing additional condition on
coefficients, whenever the converse of Abel’s theorem is false in general. Many of the concepts i.e.,
continuity, differentiability, chain rule, partial derivatives etc are extended to functions of more than one
independent variable.

3.1 Unit Objectives

After going through this unit, one will be able to
e understand the concept of power series and radius of convergence.
e identify the notation associated with functions of several variables

e familiar with the chain rule, partial derivatives and concept of derivation in an open subset of R".

e know the features of Young and Schwarz’s Theorems.
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3.2 Power Series

A very important class of series to study is power series. A power series is a type of series with terms
involving a variable. Evidently, if the variable is x, then all the terms of the series involve powers of x.
So we can say that a power series can be design of as an infinite polynomial. In this section we will give
the definition of the power series as well as the definition of the radius of convergence, uniform
convergence and uniqueness theorem, Abel and Tauber theorems.

0
Definition 1. A power series is an infinite series of the form Zanx" where a,'s are called its
n=0

coefficients.

Definition 2 (Convergence of power series). It is clear that for x = 0, every power series is convergent,
independent of the values of the coefficients. Now, we are given three possible cases about the
convergence of a power series.

(a) The series converges for only x = 0 which is trivial point of convergence, then it is called
“nowhere convergent”

e.g. Zn!x" converges only for x = 0 and for x # 0, we have

limn!x" =oo.

n—0

Thus the terms of the series do not converge for x # 0 and thus the series converges only for x =
0. Hence it is “Nowhere convergent’ series.

(b) The series converges absolutely for all values of x, then it is called “Everywhere convergent”.

e.g. The series converges absolutely for all values of x,

xn xn+1
u =— =
ol ntl
. |u x" n+1'| n+l1
lim|—2|= ( n+l) :| |:oo.
noely L n! x ‘ | X |

By D-Ratio test, the series converges for all values of x. So, it is called “Everywhere convergent”
series.

(c) The series converges for some values of x and diverges for others.
e.g. The series ) x" converges for x < 1 and diverges for x > 1.
n=0

The collection of points x for which the series is convergent is called its “Region of
convergence”.



88 Power Series & Function of Several Variables

Definition 3. Let Zanx“ be a power series. Then, applying Cauchy’s root test, we observe that the

n=0

power series » a, x" is convergent if
n=0

X[ <1
where

L:Iim|a o

. . 1
The series is divergent if |x| > T
Taking
B 1
lim[a,|"

We will prove that the power series is absolutely convergent if |X|<Rand divergent if |X| >R. If

a,,a,,.... are all real and if x is real, we get an interval —R <X <R inside which the series is convergent.

If x is replaced by a complex number z, the power series Zanz“ converges absolutely at all points z
n=0

inside the circle |z| =R and does not converge at any point outside this circle. The circle is known as

circle of convergence and R is called radius of convergence. In case of real power series, the interval
(-R, R) is called interval of convergence.

If lim|a, ""—0, then R=co and the power series converges for all finite values of x. The function

represented by the sum of series is then called an Entire function or an integral function. For example,

e”,sinz and cosz are integral functions.

If lim|a | = o, R =0, the power series does not converge for any value of x except x = 0.

an

Definition 4. Let R be the radius of convergence of the power series Zanz“,then the open interval
n=0

(-R, R) is called the interval of convergence for the given power series.

1/n 1

Theorem 1. Let Za ,X" be a power series such that lim|

n—>x0

aVl

Then the power series is convergent with radius of convergence R.
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Proof. Given that

l._ 1/n _ 1
1m|an| =
n—o R
./ a1/ n |x|
So, lim|a, x =—
n—» R

. n o o X . o X .
Hence by Cauchy’s Root test, the series Zanx is convergence if % < 1and divergent if % >1 ie,

convergent if |x| < Rand divergent if |x| > R. Hence by definition, R is radius of convergence of the

given power series.

Remark 1. (i) From the proof of above theorem, it follows that if for the series Zanx” ,

ﬁ] l/n_l

n—>0

al’l

then the series is absolutely convergent.

(i1) In view of the last theorem, we define the power series of convergence in the following way:

Consider the power series Zanx” , then the radius of convergence of this series is given by

1 Y 1/n
R=——— when lima,| " >0
11m|an|
Y 1/n
=0 when 11rn|a,7 =00
. 1/n
=o0 when 11m|an =0.

Obviously R = for an “everywhere convergent” and R =0 for a “nowhere convergent” series.

Theorem 2. If a power series Zanx" converges for x = x,, then it is absolutely convergent for every

x = x, where |x1| < |x0| .
Proof. Given that the series Zanx" 1s convergent.

Thus a,x;, >0 as n— 0.

Hence for ¢ =1/2 (say), there exists an integer N such that

n
anxO

<anZN
2

Thus, we have
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n
a”xl”‘ =la,x) |
1 n
N wps N *)
Xo
X
Now |x1|<|x0|:> —{ <.
X0

n

Thus Z

test, the series Z

is geometric series with common ratio less than 1. So, it is convergent. By comparison

Rl
X9

anxl’" converges.
= Zanx” is absolutely convergent for every x = x, where |x1| < |x0| .

Theorem 3. If a power series Zanx” diverges for x = x'then it diverges for every x = x" , where
f> .
Proof. Given that the series Zanx” diverges at x = x'.

Let x" be such that |x"| > |x'|.

Let if possible, the series is convergent for x = x" then by theorem 2, it must be convergent for all x

such that |x| < x"|.
In particular, it must be convergent at x' which is contradiction to the given hypothesis.
Hence the series diverges for every x = x", where |x"| > |x'| .

Definition 5 (Radius of Convergence).

a

n

For the power series Zanx" , the radius of convergence is also defined by the relation R = lim

n—>0 a

b

n+l

provided the limit exists.
This definition is commonly used for numerical purpose as illustrated below:

Find the radius of convergence of following:
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1 1. 1.3.
3) Ex+—3x2 wtﬁx3 Feeecrereereneeees

2.5 5.8

4) x+2ix +132 3+142x4+ ...............

Solution. (1) Here a, = —

= lim|

n—>0

R =1lim il

L an+l

l><(n +1)!‘ =
n!

The series converges for all values of x i.e, everywhere convergent.

(2) Here a, =n!
. n!
R=Ilim——=0
n(n + 1))
So, the series converges for no value of x other than zero. So, it is nowhere convergent series.
(3) Here a, = 1.3.5 s (2n-1)
258 i, (B3n-1)
JR{LECX A— (2n-1) 258 3n 1)3n+2)|
n»w\zss ................ (3n=1) 1350 (2n—1)2n+1)|
. |13+2/n| 3
= lim ==
oo 2+1/n| 2

. 3
So series converges for all x where |x| < 5

(4) Here a, = (n _nl)!
n

ntl n+l
R:Iim|(n_l)!x(n+1) :lim(1+—j e
naoo‘ n" n! ‘ n—o n

So the series is convergent for all x where|x|<e.

Definition 6. Let f(x) be a function which can be express in terms of the power series as

~
—_
)
~
Il
[
N
B
x\

n=0

then f(x) is called sum function of the power series Zanx" .
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Remark 2. We have defined the uniform convergence of a series in a closed interval always. Thus, if a

power series converges uniformly for |x| <R, then we must express this fact by saying that the series
converges uniformly in closed interval [— R+¢&,R- g], where ¢ >0 may be arbitrary chosen, however
if a power series converges absolutely for |x| <R, then we can directly say that the series converges

absolutely in (-R, R).

Theorem 4. Suppose the series Z a x" converges for |x| <R and define
n=0

f(x):ianx“ (|x|<R).
n=0
Then

(1) Z a x" converges uniformly on [-R+€,R~¢€],e>0.
n=0

(i1) The function f in continuous and differentiable in (-R, R)
(ii1) f'(x) =Znanx"'l (|X| <R)
n=1

Proof. (i) Let € be a positive number. If |x| <R— e, we have

n
a x

<, (R-e)

Since every power series converges absolutely in interior of its interval of convergence by Cauchy’s root
test, the series >a (R— e)" converges absolutely and so, by Weierstrass’s M-test,> a x"converges
uniformly on [-R+ €,R—€].

(i1) Also then the sum f(x) of >a _x" is continuous and differentiable on (-R, R) and Zanx” is
uniformly convergent on [—R +&,R— 6‘] .

Therefore, its sum function is continuous and differentiable on (-R, R).

ces . . -1
(ii1) Now consider the series Znanx" .

. 1/n
Since (n) " —1asn — oo, we have

En(nlan |)l/n :En(l an |)l/n

Hence the series > a x" and Z‘,nanx“‘1 have the same interval of convergence. Since Znanx“‘1 is a
power series, it converges uniformly in[—R+5,R—g] for every e€>0.Then, by term by term

differentiation yields
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Yna, x"" =f'(x) if |x|<R-e.

But, given any x such that |x| <R we can find ane> 0 such that|x| < R—e€. Hence
Yna,x"" =f'(x) if |x|<R.

Note. It follows from the above theorem 4 that by repeated application of the theorem f can be
differentiable any number of time and series obtained by differentiation at each step has the same radius

of convergence as series Zanx” .

Theorem 5. Under the hypothesis of Theorem 4, f has derivative of all orders in (-R, R) which are given
by

£ (x) = Zw:n(n ~)(n-2)...n-k+Da x"* .

n=k
In particular
90y =lka,,k=0,1,2,.......
Proof. Let

f(x)= i na,x" .
n=0
Then by theorem 4,
f(x)= i na,x"".
el
Again applying theorem 4 tof (x), we have

f(x)= i n(n—1a,x"">

Clearly f“(0)=|ka, the other sum vanish at x = 0.

Remark 3. If the coefficients of a power series are known, the values of the derivatives of f at the centre
of the interval of convergence can be found from the relation

SO0 =|ka,

Also we can find coefficient from the values at origin of f, 1, /", ...
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Theorem 6 (Uniqueness theorem). If > a_x" and > b _x" converge on some interval (-R, R), R >0

to some function f, then

a =b, forallneN.

Proof. Under the given condition, the function f have derivatives of all order in (-R, R) given by

n—k
Putting x = 0, this yields
£f%(0)=k'!a, and f(0)=k!b,.
for all k e N. Hence
a ,=b, forallkeN.

This completes the proof of the theorem.

Theorem 7 (Abel’s Theorem (First form)). If a power series Zanx” converges at the point R of the

n=o

interval of convergence (-R, R), then it uniformly converges in the interval [0, R].

Proof. Consider the sum

_ n+l n+2 n+p, . _
S,, =4 R +a, R +...... +a, R p=12
Then, we have
_ n+l
Sn,l - an+1R
_ n+l n+2
Sn,2 - an-HR + an+2R
and so on.
This gives
n+l _
anHR Sn,l
n+2 __
an+2R —Op2 T Sn,l
.............................. )
np _
an+pR - Sn,p - Sn p-1

Let € > 0 be given.

0
Now the series Z a,x" 1is convergent at x = R.
n=0
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The series of numbers ZanR” is convergent and hence by Cauchy’s general principle of convergence,
n=0

there exists an integer N such that

a. R +a

n+l n+2

R™+...+a, R <eVn2N Vqg=12,....

= <eVn2N&qg=12,... )

S”,q

Now if we take x € [0, R] 1.e, 0<x <R, then we have

(%)w < (%TW S, < (%)M <1. (3)

Now, consider forall n> N,

X n+l x n+2 ¥ n+2 x n+3 x n+p
<SRl =1 -l = S = - = Forreen +IS, 1l =
’ R R ’ R R PR
n+l n+2 n+2 n+3 n+p-1 n+p n+p
x X X X X x X
<es|l =1 —|=| +|=| —-|=] o +| = -l =] 4=
GGG G
x
<8(—j<8.1=8 (by (3))
R
Thus we have proved that
a, X" +a, X"+ +a,, x| <&V px1,Vxe[0,R].

o0
Hence by Cauchy’s criterion of convergence of series, the series z a,x" converges uniformly on [0, R].
n=0

Remark 4. (i) In case, a power series with interval of convergence (-R, R) converges at x =—R, then
the series is uniformly convergent in [-R, 0].
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Similarly, if a series convergent at the end points -R and R, then the series is uniformly convergent on |-
R, R].

(i1) If a power series with interval of convergence (-R, R) diverges at end pointx = R, then it cannot be
uniformly convergent on [0, R].

For, if the series is uniformly convergent on [0, R], it will converge at x = R. A contradiction to the

given hypothesis.

Theorem 8 (Abel’s theorem (second form)). Let ), a,x" be a power series with finite radius of
n=0

convergence R and let f (x) = Zanx" ;

lim f(x)=) a,R".

x—>R"

x| < R. If the series Zanx” converges at end point x = R then

Proof. First we show that there is no loss of generality if we take R =1.
Zanx" =ZanR"y" =any” where b, =a, R"

Now, this is a power series with radius R’, where

, 1 1 R

_E‘aan 1n _Ea l/nR _R

n

So, if any series is given, we can transform it in another power series with unit radius of convergence.

Hence we can take R = 1.

Thus, now it is sufficient to prove that let z a,x" be a power series with unit radius of convergence and
n=0

x| <1, if the series Zan converges then lim f(x)= Zan. .Let us proceed to prove

x—1 iy

let f(x)= Zanx”;

the same.

Then ianx" = i(Sn -8, K"
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ng +8,x" —xZSn X"
n=0 n=0

—ZSx —xZSn XS X"

n=0

m—1
=(1 —x)ZSnx” +8,x".

n=0

Now, for |x|<1;x’" —0 as m—>owand §, > S.

hmZax —hm 1-x ZSx +1lim §, x"

m—0 m—)oo 0 m-—0
n=

)= (1-x)8,x" (1)

n=0

Now, since S, — §, therefore for £ > 0, there exists integer N such that

<Svn>nN 2)
2
Also, we have
1-x) =1 (3)

Hence for n > N, we have

1/ (x)-5]

Il
—
|
=
N
i Ms
t
=
~
|

n=0

= (1 — x)iS”x” - (1 - x)i Sx”

n=0 n=0

(by (3))
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—(1-2)> (5, - 8) "

n=0
N & 0
<(1-x))|S,-S x”+—(1—x)2 x"
n=0 2 n=N+l1
u &
<(1-x)> S, =S|x" +=
n=0
N
Now for a fixed N, (1 - x) S, —S|x" 1s continuous function of x having zero value at x = 1.
n=0

Thus, there exists 6 >0 such thatl -6 <x <1
4l &
(1-x)>IS, - Sk" <=
n=0 2
|f(x)—S|<§+§:g whenever 1-6 <x<1

Hence, lim f(x)=8= Zan :

x—1 P

Remark 5. We state some result related to Cauchy product of two series which will use in following
theorem, which is infact an application of Abel’s theorem.

i) Let » a and ) b ,then the series » ¢, where ¢ =ab +ab , +......... +a b, 1s called
n n n n 0%n 1¥n-1 n-0
n=0

n=0 n=0 =

Cauchy product of series Z a, & Zb” :

n=0 n=0

(i) Cauchy’s Theorem. Let Z a, & an be absolutely convergent series such that

n=0 n=0
Zan =4, an = B, then Cauchy’s product series ch is also absolutely convergent and

ch =AB.

n

Theorem 9. If Z a, & an and ch converges to sum A, B & C respectively and if ch be

n=0 n=0 n=0

Cauchy product of Zan and an then AB =C.

Proof. Y c, is the Cauchy product of » a, and > b, .

n=0 n=0 n=0
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=c,=ab,+ab,  +.... +a,b,

Let f(x Zax ,g(x anx” and h(x Zcx ; VO<x <1.

n=0

For |x| <1, the three series converge absolutely

ZC x" = ) (By Cauchy’s theorem in Remark 5(i1))

:h(x)zf(x).g(x);OSxSl. )

Now by Abel’s theorem

lim £ (x Zan:f x)>4 as x—>1

x—1" =0
Similarly, g(x) > B, h(x)>C as x > 1~ (2)

Thus from (1) & (2), we have
AB=C.
Example 1. Show that

3 5 7
X X X

I tanflx:x——+———+ ..............
@ 3 5 7
I 1 1
ll——l—— +———+4+........
@) 3 5 7

Solution. (i) We know that

-1
(1+x2) =1-x*+x"=x" 4 ;

(1)

The series on the right is a power series with radius of convergence 1, so it is absolutely convergent in (-

1, 1) and uniformly convergent in [-k, k] where | k | <1.

Now integrating (1), we get

X
tan” x=c+x——+———+ ... ,x|<1
35 7
Putting x = 0, we obtain ¢ = 0, so that
: X x
tan” xX=Xx——+———+4 e ,x|<1
3 5 7
The series on R.H.S is a power series with radius of convergence equal to 1. However, the series
xox X
X——+————+.
3 5 7

is convergent at +1.
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Hence by Abel’s theorem, it is uniformly convergent in [-1, 1] and hence

(i1) At x = 1. By Abel’s theorem (Second form)

tan”' x = lim tan™' x

x—1"

z 1 1 1

4 35 7
Example 2. Show that for -1<x <1,

2 3 4

X X X
Dlog(l+x)=x——+——"—+.........
() log(1+x) St 37

1 1 1
ilog2=1——+———+........
(i) log 2 3 4

Solution. (i) We know that
(I+x) =l-x+x" =%+ ;—1<x<1

On integrating, we get

2 3
X

10g(1+x):x—x7+?— ................. —l<x<l1

The power series on R.H.S. converges at x = 1.

So, by Abel’s theorem

1 1 1
log(l+1)=1-—+———+............ —1<x<1
g( ) 2 3 4
:>10g2=1—l+l—l+ ................ ;—1<x<1
3 4

Tauber’s Theorem. The converse of Abel’s theorem proved above is false in general. If f is given by

f(x)=2anxn, —r<x<r
n=0

the limit f(r—) may exists but yet the series Z a r" may fail to converge. For example, if

n=0

a, =1, /()= Y (1)«

n=0
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:i(—x)", X

=0

<1

=

Then

f(17)= lim £ (x) ~ lim——.

x—1~ = 14+ x

Putx=1-h, ifx—1, h—0

Tauber showed that the converse of Abel’s theorem can be obtained by imposing additional condition on
coefficients a_. A large number of such results are known now a days as Tauberian Theorems. We

present here only Tauber’s first theorem.

Theorem 10 (Tauber). Let f(x)= Zanx“, for -1<x <1 and suppose that lim, , na, =0. If
n=0

f(x) >Sas x —>17, then Zan converges and has the sum S.

n=0
Proof. Let no, =Y k|a,| Then o, — 0 as n — c. )
k=0
. |
Also, Iim f(x, )=S wherex, =1——. (2)
n—»0 n

( when n— o, x, >17, f(xn)—>S).

Therefore to each >0, we can choose an integer N such that n > N implies

0'n—0|<§, f(xn)—S|<§, nan—0|<§
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1e.,

S
o, < ?;,

f(xn)—S|<E, n|an|<E Vn=N.
3 3
Let S, =>a,. Then for —1<x <1, we have
k=0

Sn—Sziak—S
k=0

:iak —S+f(x)—iakxk
k=0 k=0

:f(x)—S+iak—Zn:akxk— i akxk
k=0 k=0

k=n+1

:f(x)—S+Zn:ak(l—xk)— i ax".

k=n+1

k=n+1

Let x €(0,1). Then

(1-x)=1-x)1+x+

for each k. Therefore, if n> Nand 0<x <1, we have

k=n+1

<|f(x)-S|+

+

Zn:ak(l—xk)

< |f(x)-S|+

k=n+1

+

Zn: a,k(1-x)

k=n+1

g|f(x)—S|+(1—x)i:k|ak|+

k=n+1

<|f(x)—S|+(l—x)Zn:k|ak|+3£ 3 ¥
k=0 n

k=n+1

<|f(x)—S|+(1—x)ik|ak|+

. 1
Putting x =x, =1——, we find that
n

= (l—x):l
n

S, -S| = f(x)—S+Zn:ak(1—xk)— i a,x".

Sn—S|: f(x)—S+iak(1—xk)— i a.x"

o0
k
2 ax

00
k
2 ax

o0
k
2 @x

_&
3n(1-x)

(€)

(4)

+x) <k(1-x)
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S, -S| < |f(x)—S|+ZM+il

n
~ n
k=0 3n

n

Z a, converges & has sum S, which completes the proof.
n=0

3.3 Functions of Several Variables

This section is devoted to calculus of functions of several variables in which we study derivatives and
partial derivatives of functions of several variables along with their properties. The notation for a
function of two or more variables is similar to that for a function of a single variable. A function of two
variables is a rule that assigns a real number f(x, y) to each pair of real numbers (x, y) in the domain of
the function which can be extended to three and more variables.

3.3.1 Linear transformation
Definition 1. A mapping f of a vector space X into a vector space Y is said to be a linear transformation
if

f(x, +x,) =1(x)+1f(x,),

f(cx) =cf(x)

for all x,x,,x, € X and all scalars c.

Clearly, if f is linear transformation, then f(0) = 0.
A linear transformation of a vector space X into X is called linear operator on X.

If a linear operator T on a vector space X is one-to-one and onto, then T is invertible and its inverse is
denoted by T~'.Clearly, T"'(Tx)=x for all x € X. Also, if T is linear, then T is also linear.

Theorem 1. A linear operator T on a finite dimensional vector space X is one-to-one if and only if the
range of T is equal to X. i.e, T(X) = X.

Proof. Let R(T) denotes range of T. Let {Xl,xz,...,xn} be basis of X. Since T is linear the set
{TXI,TXZ,...,TXH} spans R(T). The range of T will be whole of X if and only if {TXpTXza---aTXn} is

linearly independent.

So, suppose first that T is one-to-one. We shall prove that {TXI,TX2,...,TXH} is linearly independent.

Hence, let
¢,Tx, +¢,Tx, +...+¢,Tx, =0

Since T is linear, this yields
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T(c,x,+¢,x, +...+¢,x,)=0
and so C,X, +¢,X, +...+¢,x, =0
Since {Xl,xz,...,xn} is linearly independent, we have, ¢, =c, =..c, =0.
Thus {TXpTXza---aTXn} is linearly independent and so R(T) = X if T is one-to-one.

Conversely, suppose that {TXl,sz,..., Txn} is linearly independent and so
¢, Tx, +¢,Tx, +..+¢, Tx, =0 )
implies ¢, =c, =...c, =0. Since T is linear (1) implies
T(c,x, +¢,x, +...+¢,x,)=0
= C,X, +C,X, +...+¢ x, =0
Thus T(x) = 0 only if x = 0. Now
Tx)=T(y) = Txx-y)=0 = x-y=0 = x=y
and so T is one-to-one. This completes the proof of theorem.

Definition 2. Let L(X, Y) be the set of all linear transformations of the vector space X into the vector
space Y. If T, T, € L(X,Y) and if ¢),c; are scalars, then

(c1Ti+crT)(x)= ¢ Tix+cy Tox ; x € X, It can be shown that ¢, T+¢,T2€ L(X, Y).
Definition 3. Let X, Y and Z be vector spaces over the same field. If S, T € L(X,Y), then we define their
product ST by
ST(x) = S(T(x)); x € X.
Also, ST € L(X,Y).

Euclidean space R". A point in two dimensional space is an ordered pair of real no. (x;, x»). Similarly, a
point in three dimensional space is an ordered triplet of real no. (X, X2, x3). It is just as easy to consider
an ordered n-tuple of real no. (x;, Xa,...... , Xp) and refer to this as a point in n-dimensional space.

Definition 4. Let n > 0 be an integer. An ordered set of n real no. (xj, Xp,........ , Xp) 1s called an n-
dimensional point or a vector with n-component points. Vector will usually be denoted by single bold
face letter.

y:(yla yz, ............ 5 yn)

The number xy is called the k™ co-ordinate of point x or k™ component of the vector x.

The set of all n-dimensional point is called n-dimensional Euclidean space or n-space and is denoted by R".
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Algebraic operations in R" - n-dimensional Euclidean space are as follow:

Let X = (X1,X2,...... Xn) and Y = (Y1,¥25ecvevennnnn. ,yn) be in R".
We define
(a) Equality x =y iff Xi =y, Xa = V2, cevvenvennnn. , Xn = Y.
(b) Sumx +y= (X1 Ty, X2t y2,ecenn... Xn T Yn)

(c) Multiplication by real no. (Scalar):

ax = a(X1, X2yenvnen , Xp) = (aX1,aX2,....... , aXp)
(d) Difference x - y = x+( -)y
(e) Zero vector or origin 0 = (0, 0, ....... ,0).

(f) Inner product or dot product

Xy = Zxkyk‘

k=1

(g) For all x e R". Also if A is such that
|Tx| <A|x|,xeR", then”T” <A

(h) Norm or length
If Te L(R", R™). Then

lub{|TX| :xeR",

X| < 1}
is called Norm of T and is denoted by ||T||. The inequality
72 < 7]+l

and
1/2
n
_ 2
W3] -
k=1

The norm ||x— y|| is called the distance between x & y.

(i) Also, Let x and y denote points in R", then the following results hold:
Q) ||x|| >0 and ||x|| =0 iff x=0.

(i1) ||ax||=|a|||x|| for every real a.
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i) ===
(iv) Cauchy Schwarz Inequality:
[<xy>f <[yl
@ =l -
Note 1. Sometimes the triangle inequality is written in the form
=zl <[x =+ ]y==.
This follows form (v) by replacing x by x-y and y by y-z. We also have
= Il < - 51

Definition 5. The unit co-ordinate vector uy in R” is the vector whose k™ component is 1 and remaining
components are zero. Then

u, = (O, 1, 0,......., 0)

u,= (0, (0 ,1)
If xz(xl,xz, ............ ,xn), then

X = XU+ XUy + e +x,u,

&

X| = XUy, Xy = XUy yeenrennnns X, = XU,
The vectors uy, ua,......... ,u, are also called basis vectors.

Theorem 2. Let T,Se L(R",R™) and ¢ be a scalar. Then

(a)||T|| <o and T isuniformly continuous mappings of R" and R".
BT+ S| <|T]+|S] and JeT]=|el|7]

()f d(T,8)=|T -5

,thend is a metric.

Proof. (a) Let {e;, €,.....en} be the standard basis in R" and let x € R". Then x=2ciei.
i=1

Suppose |x| <1 so that |ci| <lfori=1,2,...,n. Then
|Tx| = ‘Z ciTei‘ < Z|ci|.|Tei|
<3 re|
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Taking lub over x € R",|x|<1
||Tx|| < Z|Te[| < oo,
Further
fr—1] ==l <[l 5.y R
So if |x—y <£,then
i<t

||Tx—Ty|| <g x,yeR".

Hence, T is uniformly continuous.

(b) We have

|(T + S)X| = |TX + Sy|
< |Tx|+|Sx|
<[]+ [S]l]
= (ITl+[slx

<1, wehave

[T+ ] < 7]+ 1]\

Taking lub over x € R",|x

Similarly, it can be shown that
[T =el [T]-

(¢) We have d(T,S)=|T -S| >0 and T,S)=|T-S|=0<T=S.

Also d(T,S) =||T -S| =S—T|=d(S,T)

Further, if S,T,U e L(R",R™), then

S-U|=[s-T+T-U|
<[s-T]+|T-Y]

Hence, d is a metric.

Theorem 3. If T ¢ L(R", R™) and S € L(R", R™), then
[sTil<s{[T]
Proof. We have

(ST = s <[]
<IsfiTii
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x| <1, wehave

Is7l<[s/I].

Taking sup over x,

In theorem 2, we have seen that the set of linear transformation form a metric space. Hence the concepts
of convergence, continuity, open sets etc. make sense in R".

Theorem 4. Let C be the collection of all invertible linear operators on R".

(a) If TeC,

| :%, SeL(R",R™) and [S-T|=f<a, then SeC.

(b) C is an open subset of L(R",R™) and mapping T — T'is continuous on C.
Proof. We note that

x| = |77 Tx| < |77 |Tx]

< l|TX| for all x e R"
a

and so
(@ P)lr|=alxl- Al
<|Tx| - B|x|
< |Tx|=|(S =T«
<|Sx|  Vxer" (1)

Thus kernel of S consists of 0 only. Hence S is one-to-one. Then Theorem 1 implies that S is also onto.
Hence S is invertible and so S € C. But this holds for all S satisfying ||S - T|| < a. Hence every point of C
is an interior point and so C is open.

Replacing x by Sy in (1), we have
(@-pB)[sy|<[ss™y|=Iy]

or ‘S"'y‘ < %
and so HS"1 H < !
a-p
since S'-T'=S(T-9T"
We have

Is7 =7 =[s”ir =t

B
<—r . 2
a(a—p) @)

Thus if f is the mapping which maps T — T, then (2) implies
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IS—T|
f(S)—f(T)||<———
” &)~ )” ala—-p) -

Hence, if ||S —T|| — 0 then f(S) — f(T) and so f is continuous. This completes the proof of the theorem.

3.3.2 Derivatives in an open subset E of R"

In one-dimensional case, a function f with a derivative at ¢ can be approximated by a linear
polynomial. In fact if f'(c) exists, let r(h) denotes the difference

G- @)
h

r(h) fx) if h=0 M

and let r(0) = 0. Then we have
S+ )= f(x)+h f(x)+hr(h), (2)

an equation which holds also for h = 0. The equation (2) is called the First order Taylor formula for
approximating f(x + h) — f(x) by h f'(x). The error committed in this approximation is h r(h). From (1),
we observe that r(h) — 0 as h — 0. The error h r(h) is said to be of smaller order than h as h — 0. We
also note that h f'(x) is a linear function of h. Thus, if we write Ah =h f(x), then

A(ah, +bh,) =aAh, +bAh,
Here, the aim is to study total derivative of a function f from R" to R™ in such a way that the above said
properties of hf'(x) and hr(h) are preserved.

Definition 1(Open ball and open sets in R"). Let ‘a’ be a given point in R" and let r be a given positive
number, then the set of all points x in R" such that

xX—a|<r . C s
" ” is called an open n-ball of radius ‘r’ and centre ‘a’.

We denote this set by B(a) or B(a, r) . The B (a, r) consists of all points whose distance from ‘a’ is less
than .

In R', this is simply an open interval with centre at a.
In R?, it is a circular disc.
In R?, it is a spherical solid with centre at a and radius r.

Definition 2 (Interior point). Let E be a subset of R" and assume that a € E, then a is called an interior
point of E if there is an open ball with centre surrounded by an n-ball. i.e.,

B (a) cE.
The set of all interior points of E, is called the interior of E and is denoted by int E.

Any set containing a ball with centre ‘a’ is sometime called a neighbourhood of a.

Definition 3 (Open set). A set E in R" is called open if all points are interior points.
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Note 1. A set E is open if and only if E = interior of E.

Every open n-ball is an open set in R".

The cartesian product (a,,b,)x(a,,b, )X covreee... x(a,,b,) of n-dimensional open interval
(a,b1)yeeeennnnnn.. ,(an,by) is an open set is R" called n-dimensional open interval, we denote it by (a, b)
where

a (al,az, ............. ,an)

b—(bl,bz, .................. ,bn)

Remark 1. (i) Union of any collection of open sets is an open set.
(i1) The intersection of a finite collection of open sets is open.
(ii1) Arbitrary intersection of open sets need not be open.

e.g. Consider the seq. of open interval such that

11
Gn={——,—}; neN
nn

Clearly each G" is open set but G, G,............. G, ={0} which is being a finite set is not open.

2

Definition 4 (The structure of open sets in R). In R’ the union of countable collection of disjoint
open interval is an open set in R’ can be obtained in this way.

First we introduce the concept of a component interval.

Definition 5 (Component interval). Let E be an open subset in R’ and open interval I (which may be
finite or infinite) is called a component interval of E

If I C E and if there is no interval J#1 st. [ cJCE.

In other words, a component interval of E is not a proper subset of any other open interval contained in E.

Remark 2. (i) Every point of a nonempty open set E belongs to one and only one component interval of
E.

(i1) Representative theorem for open sets on the real line.
Every nonempty open set E in R’ is the union of a countable collection of disjoint intervals of E.
Definition 6(Closed set). A set in R" is called closed if and only if its complement R" - E is open.

Remark 3. (i) The union of a finite collection of closed sets is closed and the intersection of an arbitrary
collection of closed set is closed.

(i1) If A 1s open and B is closed, then A - B is open and B-A is closed.
A-B=ANB".
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Definition 7 (Adherent point). Let E be a subset of R" and x is point in R", x is not necessary in E.
Then x is said to be adherent to E if every n-ball B(x) contains atleast one point of E.

E.g. (1) If xeE, then x adherenes to E for the trivial reason that every n-ball B(x) contains x.
(i1) If E is a subset of R which is bounded above. Then sup.E is adherent to E.

Some points adheres to E because every ball B(x) contains points of E distinct from x these are called
adherent points.

Definition 8 (Accumulation point/Limit point). Let E be a subset of R" and x is a point in R”, then x is
called an accumulation point of E if every n-ball B(x) contains atleast one point of E distinct from x.

In other words, x is an accumulation point of E if and only if x adheres to E-{x}.

If x € E, but x is not an accumulation point of E, then x is called an isolated point of E.
e.g. (i) The set of numbers of the form 1/n (n=1,2,........ ) has 0 as an accumulation point.
(11) The set of rational numbers has every real number as accumulation point.

(i11) Every point of the closed interval [a, b] is an accumulation point of the set of numbers in the open
interval (a, b).

Remark 4. If x is an accumulation point of E, then every n-ball B(x) contains infinitely many points of
E.

Definition 9 (Closure of a set). The set of all adherent points of a set E is called a closure of E
and is denoted by E .

Definition 10 (Derived set). The set of all accumulation points of a set E is called the derived set of E
and is denoted by E’.

Remark 5. (i) A set E in R"is closed if and only if it contains all its adherent points.

(if) A set E is closed iff E=E.
(iii) A set E in R" is closed iff it contains all its accumulation points.

Definition 11. Suppose E is an open set in R" and let f : E — R" be a function defined on a set E in R"
with values in R™. Let x € E and h be a point in R" such that |h| <r and x + h € B(x, r). Then f is said to
be differentiable at x if there exists a linear transformation A of R" into R" such that

f(x+h)=f(x)+Ah+r(h) (1)
where the reminder r(h) is small in the sense that

fim, _, X1,

h—0 |h|

We write f'(x) = A.

The equation (1) is called a First order Taylor formula.
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|f(x+h)— f(x)—Ah|
h—0 |h| =0. @)

The equation (2) thus can be interpreted as “For fixed x and small h, f(x + h) — f(x) is approximately
equal to f'(x)h, that is, the value of a linear function applied to h.”

Also (1) shows that f is continuous at any point at which f is differentiable.
The derivatives Ah derived by (1) or (2) is called total derivative of f at x or the differential of f at x.

In particular, let f be a real valued function of three variables x, y, z say. Then f is differentiable at the
point (X, y, z) if it possesses a determinant value in the neighbourhood of this point and if

Af =f(X+AX,y+Ay,z+ Az) - f(X,y,z) = AAX + BAy + CAz+ € p, where p =|Ax |+ | Ay |+ | Az]|,
e—>0as p—0and A,B,C are independent of X,y,z. In this case AAx + BAy + CAz is called
differential of f at (x, y, z).

Theorem 1 (Uniqueness of derivative of a function). Let E be an open set in R" and f maps E in R™
and x € E. Suppose h € R"is small enough such that x + h € E. Then f has a unique derivative.

Proof. If possible, let there are two derivatives A; and A,. Therefore

|f(x+h)—f(x)— A, h| o

11Inh—)O |h|
and
i, o O _|£|(X) “Aah]_

Consider B= A, - A,. Then
Bh=Ah—-A;h
= f(x + h)- f(x) +f(x)- f(x + h) + Ajh — Ash
= f(x + h)- f(x) — Aoh + f(x)- f(x + h) + Ajh

and so
|Bh|<|f(x+h) = f(x) = A +|f(x+h)— f(x)— A

which implies

lim, _, @ <lim,_, |f(X +h)-f(x) —A1h| . |f(X +h)—f(x) _A2h|
" | |
=0
For fixed h # 0, it follows that
%—)Oaastﬁﬁ W
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The linearity of B shows that L.H.S of (1) is independent of t. Thus Bh = 0 for all h ¢ R". Hence B = 0,

that is, A} = A,, which proves uniqueness of the derivative.

The following theorem, known as chain rule, tells us how to compute the total derivatives of the
composition of two functions.

Theorem 2 (Chain rule). Suppose E is an open set in R", f maps E into R™, f is differentiable at x, with
total derivative f'(Xg), g maps an open set containing f(E) into R* and g is differentiable at f(x() with total
derivative g'(f(xo)). Then the composition map F = fog, a mapping E into R* and defined by F(x) =
g(f(x)) is differentiable at x and has the derivative

F'(x0) = g'(f(x0)) f'(x0)-
Proof. Take
Yo = f(x0), A =1"(x0), B = g'(y0)
and define
() = £(0) ~£(x,) - Ax ~x,)
5(y)=g(y)—g(yo) =By -v,)
r(x) =F(x)-F(x,) - BA(x—Xx,).
To prove the theorem, it is sufficient to show that
F'(x9) = BA,
that is,

r(x)

|x—x,|

-0 asx—>x,

(1
But, in term of definition of F(x), we have
r(x) = g(f(x)) —g(y,) =B (x) = f(x,) — A(x = x,))
so that
r(x) = 1,(f(x)) + B (x). (2)
If € >0, it follows from the definitions of A and B that there exists 1> 0 and & > 0 such that

_||)’:2£J;)|| e asy—y,
0

or |n(y)|<ely—y| asly-y|<n ie, |f®)-f(x)<n
and|r1(x)‘£e|x—x0| if |x—x,|<0.
Hence

(D)) < e|f(x) = f(x)|
=e|r(x)+ A(x - x,)| 3)

<€ |x—x0|+e||A||(x—x0)
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and

()< 8l
<e |[Blfx x| if [x— x| <8. @

Using (3) and (4), the expression (2) yields

Hence
|r(x)| <e? |x—x0|+ IS ||A||(x—x0)+ IS ||B||(x—x0)
r(x)
ﬁs e +e|4|+<|B|
efe+laf+ 18] ifles|<
Hence,
% —0as x > x,
X=X,

which in turn implies
F'(x0) = BA = g'(f(x0)) f'(Xo).
3.3.3 Partial derivatives.

Let {e,e,,........ e,} be the standard basis of R". Suppose f maps an open set E © R" into R™ and

let f,f,,...,f, be components of f. Define D, f, on E by
fi(x+te,)— f,(x)
t

(Dkfz)(x) = lz% (1)

provided the limit exists.

Writing  f,(x,,X,,...,X,) inplace of f;(x) we observe that D, f; is derivative of f, with respect to x, ,

of.
keeping the other variable fixed. That is why, we use a—‘ frequently in place of D f..
Xk

Since f =(f,,f,,...,f,), we have
D, f(x) = (D,f,(x),D,f,(x),...,D, £, (x))

which is partial derivative of f with respect to xy.

Furthermore, if f is differentiable at x, then the definition of f'(x) shows that

i G 1) = £ ()
t

t—0

= f'(X)h, )

If we take h, =e,, taking components of vector in (2), it follows that
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“If fis differentiable at x then all partial derivatives D, f; (x) exist”.

In particular, if f is real valued (m=1), then (1) takes the form
) f(x+t)—f(x

(D,£)(0) = lim,_, =)
For example, if f is a function of three variables x, y and z, then

f(X + AX, Y, Z) B f(X: Y, Z)

Df(x)=1lim,_,, X
X
. f(x,y+Ay,z)—-f(x,y,z
Df(y) =lim,_, Y yA; (X,¥,2)
and Df(Z) — limAzﬁo f(Xv y:Z+AAZ)_f(X7 Y, Z)
z

and are known respectively as partial derivatives of f with respect to x, y, z.

The next theorem shows that Ah =1 '(X) (h) is a linear combination of partial derivatives of f.
Theorem 1. Let E — R"and let f: E — R" be differentiable at x (interior point of open set E). If

h=ce, +c,e, +...+c,e, where {el,ez,...,en} is a standard basis for R", then
f'(x)(h) =) ¢, D, f(x).
k=1
Proof. Using the linearity of f'(x), we have

F(x) ()= Y F(x)(ee,)

= ickf’(x)ek
But, by (2),
f’(x) e, = (D, )(x)
Hence f’(x)(h) = Zn:cka(f)(x)

If fis real valued (m = 1), we have
f'(x)(h) = (D,f(x),D,f(x),...,D f(x))h.
Definition 1 (Continuously differentiable mapping).

A differentiable mapping f of an open set E — R" into R™ is said to be continuously differentiable in E
if f' is continuous mapping of E into L(R", R™).
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Thus to every € > 0 and every x € E there exists a 6 > 0 such that
||f'(y)—f'(x)||<e if ye E and |y—x| <0.

In this case we say that fis a C'-mapping in E or that f € C'(E).

Theorem 2. Suppose f maps an open set E < R" into R™. Then f is continuously differentiable if and
only if the partial derivatives D;f; exist and are continuous on E for 1<i<m,1<j<n.

Proof. Suppose first that f is continuously differentiable in E. Therefore to each x € E and € > 0, there
exists a & > 0 such that

[f'(y) - f'(x)|| <€ if y€E and |y —x|<§.
We have then
Lf e, = £ X)e,| = |(f ()~ £ (x)e|
S VACORIACH | (1)
=[O -f'@)|| <eif yeE and|y-x<5.
Since f is differentiable, partial derivatives Djf; exist. Taking components of vectors in (1), it follows that
|(D/f)(y)~Dif (x)| < if y € E and [y—x| < 6.
Hence D f,are continuous on E for I<i<m,1<j<n.

Conversely, suppose that D f; are continuous on E for 1 <i<m,1<j<n. It is sufficient to consider one-

dimensional case, i.e., the case m = 1. Fix x € E and € > 0. Since E is open, x is an interior point of E and
so there is an open ball B C E with centre at x and radius R. The continuity of D,f implies that R can be

chosen so that
(DN =D N0 < if yeB1<j<n )

Suppose h=2he.

773

|h|<R, and takev, =0

and v, =he, +hse, +...+he, for 1<k<n.

Then

Fatm = f@) =S (rv) = fx+v, )]
3)

n

2

j=1

f(s+vj_l. +hjej)—f(x+vj_1)‘

Mean value theorem implies
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Fxem)=F(1)=3,

for some 0 € (0,1)

hD, f (x +v, +0he, )

subtracting ih ; (Dj f )(x)
=

and then taking modulus,

” [h_/Djf(x+vj71 +‘9/hje_/)_h_/(Djf)(x)}

J=1

f<x+h>—f<x>—§h_,(D_,f)<x>

Z[hj [(Djf)(x+vj_1 +0,he, )]—(Djf)(xﬂ

j=1
n

€

< h =

J=1 n

£ < €
<— hl=—mnlhl=¢cl|h
njz_:,\ \ , |hl=¢e|h]

Hence f is differentiable at x and f'(x) is the linear function which assigns the number

f'(x)h = Zhj (Djf)(x) when f'(x) is applied on h. Since (le)(x),(sz)(x)..., (an)(x) are
j=1

continuous functions on E, it follows that f' is continuous and hence f € C '(E )

Hence f is differentiable at x and f'(x) is the linear function which assigns the number X h;(D;f)(x) to

the vector h =X h.e,. The matrix [f(x)] consists of the row ((D,f)(x),(D,f)(x)....,(D,f)(x)). Since

(D,f)(x),(D,f)(x)....,(D, f)(x) are continuous functions on E, it follows that f' is continuous and hence

f e C'(E).

Classical theory for functions of more than one variable

Consider a variable u connected with the three independent variables x, y and z by the functional
relation

u =ux,Yy,z)
If arbitrary increment Ax, Ay, Az are given to the independent variables, the corresponding increment

Au of the dependent variable of course depends upon three increments assigned to X, y, z.

Definition 2 (Continuous function). Let u: R" — R be a function. Then u is said to be continuous at a
point x = (x,, %, ,........ ,x,)e R". If given & >0, there exists a § > 0 such that
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Definition 3 (Differentiable function). A function u = u(x, y, z) is said to be differentiable at point (x,
y, z) if it posses a determinant value in the neighbourhood of this point and if

Au = AAx +BAy +CAz+ € p,
where p=|Ax|+|Ay|+|Az

,e—>0as p—0and A, B, C are independent of Ax, Ay, Az.

In the above definition p may always be replaced by 1, where

77=\/Ax2 +AY* +AZ .

So, if u: R" — R be a function, then u is said to be differentiable at a point x = (x1 I N , X

there exist constants A4,, 4, ,.............. , A4, such that for given & >0

|u(x1 AL X A, X, FAX)) — U (X, Xy, X))

where p = /ZAxf & & — 0 whenever p—0.
i=1

Definition 4 (Partial derivative). If the increment ratio

= AN, + A, Ax, +........ +A4 Ax +¢gp

U(X + AX) Y, Z) B U(X, Y, Z)
AX

tends to a unique limit as Ax tends to zero, this limit is called the partial derivative of u with respect to
x and is written as — oru _.
OX

Similarly, M and e can be defined.
oy 0z

So, if u: R" — R be a function, we define a partial derivative as

Ou
OX,

= [im
Ax,—>

0 Ax;
The differential coefficients. If in the relation
Au=AAx+BAy+CAz+€ p
we suppose that Ay = Az =0, then, on the assumption that u is differentiable at the point (x, y, z),
Au=u(x+Ax,y,z)—u(X,y,z)
= AAx+ € Ax

and by the taking limit as Ax — 0,since €e—> 0 as Ax - 0, we get a =A.

Similarly ) =B and M =C.
oy 0z
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Hence, when the function u = u(x, y, z) is differentiable, the partial derivatives @,@ a are

ox oy oz

respectively the differential coefficients A, B, C and so
Au :@AX+@Ay+@Az+ eEp
0x oy 0z
The differential of the dependent variable du is defined to be the principal part of Au so that the above
expression may be written as
Au =du+ € p.

Now as in the case of functions of one variable, the differentials of the independent variables are
identical with the arbitrary increment of these variables. If we write u = x, u =y, u = z respectively, it
follows that

dx = Ax,dy = Ay, dz=Az

Therefore, expression for du reduces to

du =@dx+@dy+@dz
oy 0z

0x

Proposition 1. Let f: R" — R be a function. If f is differentiable at a point x = (x,,x,,......, x, ) € R"
then f(x, + Ax,, X, + Ax, ... ,xn+Axn)—f(x1,x2, ............ ,xn)

=1Axl+iAx2+ ......... +1Axn+5p

ox, ox, Ox,
where p= /ZAX,.Z and e >0 as p > 0.
i=1
Proof. Since fis differentiable at a point x = (x,, %, ,.......... ,x, ), by definition of differentiability, there
exists constants A,, 4, ,......... , 4, such that, for given & >0
Lo, + Ax,, X, + Axy ey X, +AX, )= (X, X, e, X, )
= AAx, + AAX, + ... +A Ax, +éep (*)

where pz,/ZAxf and e >0 as p —>0.

Taking Ax; =0 for j#1i for some fixedi = (1,2, ..... ,n).

Thus, we have

Taking Ax, - 0
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lim f(xl,xz, .......... o X, FAX ,xn)—f(xl,xz, ............ ’x")—A &> 0asp—>0
Ax; >0 Ax, ' orAx; = 0
of .. . o
= v = A, (By definition of partial derivative)
xi
This is true for every i = (1,2, ......... ,n)
S A Ly,
Ox, ox, Ox,
Putting these value in equation (*), we get
f(x1+Ax1,x2+Ax2, ......... ,xn+Axn)—f(x1,x2, ........... ,xn)
=iml+imz+ ............. +iAxn+8p
Ox, ox, ox,
where p = (ZAxi)m and ¢ >0 as p—0.
Remark 1. If the function u = u(x,,,,.ccove...... ,x, ) is differentiable at point (x,,x,,......... ,x,) then the
partial derivative of u w.r.t. x,,x, e ,x, certainly exist and are finite at this point, because by the
above proposition, they are identical to constants A4,, 4, ,........... , A, respectively.

However converse of this is not true, i.e., partial derivatives may exist at a point but the function need
not be differential at that point.

In other words, we can say partial derivatives need not always be differential coefficients.
The distinction between derivatives and differential coefficients

We know that the necessary and sufficient condition that the function y = f(x) should be differentiable at
the point x is that it possesses a finite definite derivative at that point. Thus for functions of one variable,
the existence of derivative f'(x) implies the differentiability of f(x) at any given point.

For functions of more than one variable this is not true. If the function u = u(x, y, z) is differentiable at
the point (x, y, z), the partial derivatives of u with respect to x, y and z certainly exist and are finite at
this point, for then they are identical with differential coefficients A, B and C respectively. The partial
derivatives, however, may exist at a point when the function is not differentiable at that point. In other
words, the partial derivatives need not always be differential coefficients.

3 3
Example 1. Let f be a function defined by f(X,y) = %, where x and y are not simultaneously zero,
X" +y

(0, 0)=0.
If this function is differentiable at the origin, then, by definition,
f(h,k)—£(0,0)=Ah+ Bk+e€n (1)

where 7 =+h’>+k* and e—> 0 as 7 — 0.
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Putting h =7cos 8,k =7sinfin (1) and dividing through by 77and taking limit as 7 —0, we get

cos’ @—sin’ @ = A cos @+ Bsin 6
which is impossible, since 0 is arbitrary.

The function is therefore not differentiable at (0, 0). But the partial derivatives exist however, for

£.(0,0) = lim, =% . 100 limhﬁo% =1
) £(0,k)-f(0,0) . 0-k
£,(0,0) =lim, ,, " = hmk_)oT =—1.
Xy o2, 2
Example 2. T if x"+y" #0
P Let f(x,y)=1/x*+y’
0 if x=0,y=0

Then f,(0,0)=0=f(0,0)

and so partial derivatives exist. If it is different, then

df = f(h,k)~£(0,0) = Ah + Bk+ e 77, where A =f,(0,0),B =, (0,0).

This yields
B S R
vh® +k?

or hk =e (h* +k%)

Putting k = mh, we get
mh® =e h’(1+m?*)

m

or =c

1+m’
Hence lim, ol = 0, which is impossible. Hence the function is not differentiable at the origin.
+m

Remark 2. (i)Thus the information given by the existence of the two first partial derivatives is limited.
The values of f, (x,y) and f, (x,y) depend only on the values of f(x, y) along two lines through the

point (X, y) respectively parallel to the axes of x and y. This information is incomplete and tells us
nothing at all about the behavior of the function f(x, y) as the point (x, y) is approached along a line
which is inclined to the axis of x at any given angle 0 which is not equal to 0 or 7 /2.

(i1) Partial derivatives are also in general functions of x, y and z which may possess partial derivatives
with respect to each of the three independent variables, we have the definition
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2) 0 (ou ~lim,_ , u (x+Ax,y,z)—u (X,y,2)
ox \ Ox Ax
0 (ou . u (x,y+Ay,z)-u, (X,y,z
b M) tim, (X, y+Ay,z)-u, (x,y,2)
oy \ 0x Ay
0 0 (ou i (x,y,z+Az)—u (x,,2)
oz \ Ox fem0 Az
provided that each of these limits exist. We shall denote the second order partial derivatives by
o’u o’u o’u
— oru, ,——oru, and oru,.
ox oyox 0z0x

Similarly we may define higher order partial derivatives of X and ?
z
The following example shows that certain second partial derivatives of a function may exist at a point at

which the function is not continuous.

when (x,y) # (0,0
Example 3. Let $(x, y)=1 x—y Co) 7 (0.0

0 when (x,y) =(0,0).

This function is discontinuous at the origin. To show this it is sufficient to prove that if the origin is
approached along different paths, ¢(x, y) does not tend to the same definite limit. For, if ¢(x, y) were
continuous at (0, 0), ¢(x, y) would tend to zero (the value of the function at the origin) by whatever path
the origin were approached.

Let the origin be approached along the three curves
(i) y=x-x’ (i) y=x-x° (i) y=x-x%

Then we have

3 4
0 #(xy) =20 L gasx 0
X
.. 2x° +0(x")
(i) ¢(x,y)=——F"">2a5x>0
X
3 4
(111) ¢(x, y)=2x+—?(x)—>oo asx —0
X

Certain partial derivatives, however, exist at (0, 0), for if ¢_ denote ai(zlj we have, for example
X \ OX
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o, (0,0) =lim,

$(h0)-4,(0.0) 25 _
h

¢xx (0’ 0) = lirnh—)O

since ¢(x,0) =x",4, (x,0)=2x when x # 0.

The following example shows that u,, is not always equal to uy.

22
YD hen (xy)#(0,0)
Example 4. Let f(x,y)=9 x*+y

0 when (x,y)=(0,0).
When the point (x, y) is not the origin, then

of _xz—yz 4x’y*
a_:y SRR 22
X X +y (x*+y%) | (1)

of _xz—yz 4x*y*
PR R A Y
oy X7yt (xT+yT)

2

while at origin,

f;C(O,O) — hmf(hao)_f(oao) =0
h—0 h (3)

and similarly f (0,0)=0.
From (1) and (2), we see that
£0,y)==y (y#0) and [, (x,0)=x (x#0)

(4)
Now we have, using (3) and (4)
. f (h,0)-f (0,0) h
fxy (0,0) =lim, ,—= - y = lmh»oﬂ =1
£,.(0,0)= lim, (%0 - L9 _ 1imM‘Tk —1.

and so f_(0,0) = f, (0,0).

Example S. Prove that the function

£(x,y)=1/|xy|
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is not differentiable at the point (0, 0), but that % and % both exist at the origin and have the value

Zero.
Hence deduce that these two partial derivatives are continuous except at the origin.
Solution. We have

£(h,0)—£(0,0)

of
—(0,0)=1i =0
aX ( ) 11’nhao h
ﬁ(0,0) = 1imk90f(0’k) —f0.0 _
dy k

If f(x, y) is differentiable at (0, 0), then we must have
f(h,k)=0h+0k+evh’+k*

where €— 0 as Vh? +k? —>0.

[k
vh? +k?

Putting h = pcos 8,k = psin 0, we get

Now e=

|cos @sin <9|

lim, , e= \/|cosé?sin 6?| = \/|cosé’ sin 0| =0 which is impossible for arbitrary 6.

Hence, fis not differentiable.

Now, suppose that (x,y) # (0,0). Then

of _ limhéof(x + h: }2 B f(Xa Y)
+h)y|— y +h
(x+hyy|-|xy] o 30 [x +h|-[x]

o) )

. C 1
Now, we can take h so small that x + h and x have the same sign. Hence the limit is l r— M

2 dxy] 2\ X

Slmllarly,

Both of these are continuous except at (0,0). We now prove two
24/ xy

theorems, the object of which is to set out precisely under what conditions it is allowable to assume that

ny (aﬂ b) = fyx (a7b)'
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Theorem 3 (Young). If (i) f, and f, exist in the neighbourhood of the point (a, b) and (ii) f,and f, are

differentiable at (a, b); then
f =1

Xy yx*

Proof. We shall prove this theorem by taking equal increment h for both x and y and calculating A’f in
two different ways, where

A*f =f(a+h,b+h)-f(a+h,b)—f(a,b+h)+f(a,b).

Let
H(x) =f(x,b+h)—f(x,b)
Then
A*f =H(a+h)—-H(a).
Since f_exists in the neighbourhood of (a, b), the function H(x) is derivable in (a,a+h). Applying mean
value theorem to H(x) for 0 < <1, we obtain
H(a+h)—H(a)=hH'(a +6h)
Therefore
A’ f =hH (a+ 6h)
=h[f (a+6h,b+h)— f (a+6h,b)] (1)

By hypothesis (i1) of theorem, f _(x,y) is differentiable at (a, b) so that

f,(a+6h,b+h)-f (a,b)=0hf, (a,b)+hf, (a,b)+e’h
and

f (a+6h,b)—f (a,b)=06hf_(a,b)+€"h,

where €’and €' tend to zero as h — 0. Thus, we get (on subtracting)

f,(a+6h,b+h)~f (a+6h,b)=hf (a,b)+(e'-€')h
Putting this in (1), we obtain

Nf=hf +e I ()

where €,=¢ — €, so that €, tends to zero with h.

Similarly, if we take

K(y) = f(a + ha Y) - f(a:» Y)
Then we can show that
Nf=hf +e b (3)
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where €,— O with h.
From (2) and (3), we have

A*f
e f (a,b)+e=1(ab)+e,

Taking limit as h — 0, we have

2

lim, , Ah—f =f,(a,b)=1(a,b)

2
which establishes the theorem.

Theorem 4 (Schwarz). If (i) f,f ,f all exist in the neighbourhood of the point (a, b) and (i1) f, is

X2y

continuous at (a, b); then f,_ also existat (a, b) and f =1 .
Proof. Let (a+h,b+k)be point in neighbourhood of (a, b). Let (as in the above theorem)
A*f =f(a+h,b+k)—f(a+h,b)—f(a,b+k)+f(a,b).
and
H(x) =f(x,b+k)—-f(x,b)
so that we have
A*f =H(a+h)—-H(a).
Since f exists in the neighbourhood of (a, b), H(x) is derivable in (a,a+h). Applying Mean value

theorem to H(x) for 0 < @ <1,we have
H(a+h)—H(a)=hH'(a+6h)
and therefore
A’f =hH'(a + 6h) = h[f_(a + Oh,b+k)—f_(a +6h,b)].

Now, since f,, exists in the neighbourhood of (a, b), the function f, is derivable with respect to y in

(b,b+k). Applying mean value theorem, we have
Nf = hkf, (a+6h,b+60'k), 0<6'<l

That is

l{f(a+h,b+k)—f(a+h,b) _f(a,b+k)—f(a,b)

=f (a+6h,b+0k

Taking limit as k tends to zero, we obtain

%[fy(a+h,b)—fy(a,b)]=}(i£1(}fyx(a+t9h,b+0'k)=fyx(a+t9h,b) (1),
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Since f is given to be continuous at (a, b), we have
f,(a+60h,b)=1f (a,b)+e,
where €e— 0 and h — 0.

Hence taking the limit h — 01in (1), we have
f,(a+h,b)-f (a,b)
h
that is, f, (a,b)=1f (a,b)

lim, =lim, _,[f,, (a,b)+ €]

This completes the proof of the theorem.

Remark 3. The conditions of Young or Schwarz’s Theorem are sufficient for f =f  but they are not
necessary. For example, consider the function

2

2
X
2+yy2 . (%,y)#(0,0)

X
0 , (x,y)=(0,0).

f(x, y)=

We have

7(h,0)-£(0,0)
h

£(0,k)- £(0,0)
k

£.(0,0)=1im, , =0

0

f (0,0) =lim, ,

Also for (x,y) #(0,0), we have

4

F ()= (x* +y°)2xy’ —x*y’.2x _ 2xy
X (XZ + y2)2 (XZ +y2)2
2x'y

f(Xy)=——5=
y( Y) (X2 +y2)2
Again

fx (Oa k)_fx (07 O)

k

f,(0,0)=lim,_, =0and f(0,0)=0

So that £, (0,0) = f,, (0,0).
For (x,y) #(0,0), we have

B 8xy3(x2 + y2 )2 —2xy4 4y(x2 + yz) _ 8x3y3

f > 2 24 ) 253
w3) (x*+y°) (x*+y")

Putting y = mx, we can show that

lim, )00 f (X, y) #0 =1 (0,0)
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so that f, is not continuous at (0, 0). Thus the condition of Schwarz’s theorem is not satisfied.

To see that conditions of Young’s theorem are also not satisfied, we notice that

f,(h,0)~1,(0,0)
- -

£ (0,0)=1lim, , 0.

If f_1is differentiable at (0, 0), we should have

£ (h,k)—f,(0,0) = hf,, (0,0)+kf, (0,0)+ €

2hk*
(% +k°)’

3

where 7 =+h”>+k* and e—> 0 as 7 — 0.

Put h=7cosd,k=7sind, then n=+h*>+k’> =p
so we have

2pcosf.p*sin* @
p px: eh

2cosf.sin’ @ =¢

Taking limit as p — 0, we have
2cos@.sin* =0

which is impossible for arbitrary 6.
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4.0 Introduction

In this unit, we study most important mathematical tool of analysis i.e. Taylor theorem. As we know,
Taylor series is an expression of a function as an infinite series whose terms are expressed in term of the
values of the function’s derivatives at a single point. Also we shall be mainly concerned with the
applications of differential calculus to functions of more than one variable such as how to find stationary
points and extreme values of implicit functions, implicit function theorem, Jacobian and its properties etc.

4.1 Unit Objectives

After going through this unit, one will be able to
e solve Taylor series expansions.
e find the stationary points and extreme values of implicit functions.
e understand Jacobian and its properties.

e know about the local character of Implicit function i.e. the implicit function is a unique solution
of a function f(x, y)=0 in a certain neighbourhood.
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4.2 Taylor Theorem

In view of Taylor’s theorem for functions of one variable, it is not unnatural to expect the possibility of
expanding a function of more than one variable f(x+h,y+k,z+m), in a series of ascending powers of
h, k, m. To fix the ideas, consider a function of two variables only; the reasoning in general case is

precisely the same.

Theorem 1 (Taylor’s theorem). If f(x, y) and all its partial derivatives of order n are finite and
continuous for all point (x, y) in domain a <x<a+h,b<y<b+k, then

f(a+h,b+k):f(a,b)+df(a,b)+%d2f(a,b)+...+( L 4 'fa,b)+R,
! n

—1)!
where Rn:i‘d“f(a+6’h,b+9k),0<9<l.
n!

Proof. Consider a circular domain of centre (a, b) and radius large enough for the point (a+h,b+k)to
be also with in domain. Suppose that f(x, y) is a function such that all the partial derivatives of order n of
f(x, y) are continuous in the domain. Write

x =a+ht,y=b+kt,

so that, as t ranges from 0 to 1, the point (x, y) moves along the line joining the point (a, b) to the point
(a+h,b+k); then

f(x,y)=f(a+ht,b+kt) =g(t).
@.dx of dy=h6f+k8f _

Now, ¢'(t) = . —+k—
a0 ox dt Oy dt ox 0Oy

df

and

Y R ALY - AT Y
ox\ ox oy)dt oy\ oOx oy)dt

2 2 2 2
LSS ds O e Oy O dy
ox” dt Ox0Oy dt oyox dt oy~ dt

2 2 2 2
=[h22{+hk§é;+hk§yg +k° gy{j
X X X

2 62 82 2 62 '
=|h +2hk +k f (by Schwarz's theorem)
’ oy

ox Ox0Oy ?
o oY

=|h—+k— | f(a+ht,b+kt)
ox oy

and hence, similarly we get

¢"(t) =d’f,....¢"™ (t) =d"f
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Also, ¢(t) and its n derivatives are continuous functions of t in the interval 0<t<l,and so, by

Maclaurin’s theorem

#(1) = $(0) + 4/ (0) +§¢"(0) ot %w"(@t) )

where 0 <@ <1.Now putt =1 and observe that
#p(1)=f(a+h,b+k),
$(0) =1f(a,b),
¢'(0) = df(a,b),
¢"(0)=d’f(a,b),

¢ (6t) = d"f(a + 6h, b+ k).

It follows immediately from (1) that

d"'f(a,b)+R, (2)

f(a+h,b+Kk) = f(a,b)+df(a,b)+ —d*F(a,b)+ ...+ —
2! (n—1)!

where Rn:i‘d“f(a+6’h,b+9k),0<9<l.
n!

Here, we assumed that all the partial derivatives of order n are continuous in the domain. Taylor
expansion does not necessarily hold if these derivatives are not continuous.

Remark 1. If we put a=b=0,h=x,k =y, from the equation (2), we get

f(x,y) =f(0,0)+df(0,0)+ idzf(o, 0)+...+ Ld“'lf(o, 0)+R,
2! (n—1)!

where R, = i‘d“f(HX, dy),0<0<1.
n!

This is known as Maclaurin’s theorem.

2. Ifweput a+h=x, b+k=y, we get
0 0
f(x,y)=f(a,b)+| (x—a)=—+(y—b)— | f(a,b) +........
ox oy

1
(n—1)!

+

{(x—a)a—iﬂy—b)%} f(a.b)+R,,

where R, :i{(x—a)£+(y—b)£} fla+(x—a)d,b+(y—b)0).
n! ox oy

This is called Taylor’s expansion of f(x,y)about the point (a,b)in power of (x—a)and(y —b).
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Taylor Theorem

Example 1. If f(x,y)= «/|Xy , prove that Taylor’s expansion about the point (X, x) is not valid in any

domain which includes the origin.

Solution. Given that f(x,y)= \/m

We find

Now,

Also

Thus,

Now, Taylor’s expansion about (x,x) for n=1 is

f+hx+h)= f(x,x)+h{f.(x+0h,x+0Oh)+ f,(x+0Oh,x+0h)}

£.(0,0)= %i

£,(0,0)=lim

Sfo(x, )=

S (%)=

Jo(6x)= 1,06 x) =

—>

n%f(h,o);f(oao)zo

l M,x>0

|x

|x|+h,x+(9h>0
|x+h|= |x|—k,x+l9h<0

|x

,X+60h=0.

0.0~ /0.9 _,
k

If the domain ((x,x),(x+ A,x+ h)) contains origin then x and x-+/ must be of opposite sign i.c.

|x+h|=x+h,

or

under these conditions none of the equality in (1) holds.

|x+h|=—(x+h),

x| =

x| =x
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Hence the expansion is not possible because partial derivatives f, and f, are not continuous in any

domain which contains origin.

(" Partial derivatives f, , f, are not continuous at origin and therefore Taylor’s theorem is not necessary
valid).

Example 2. Expand x*y+3y—2 in power of (x—1),(y+2).
Solution. Let us use Taylor’s expansion with a=1,b=-2.

Then, f'(x,y)=x"y+3y-2, f(1,-2)=-10

fo(x,y)=2xy, £.(1,-2)=—4
[, (6,y)=x"+3, £,(1,-2)=4
Su(6,y)=2y, fu(,-2)=—4

S (6, 9) =2x, f,(1,-2)=2
Sy (x,3)=0, f,(1,=2)=0
fer (%) =0, fux(1,-2)=0
Sy (%,3)=0, fy(1,=2)=0
S, ) =2, fr(,-2)=2
S () =2, [ (1,-2)=2.

All higher derivatives are zero. Thus, we have
Xy+3y-2=-10-4(x-D)+4(y+2)-2(x-1)* +2(x = D(y +2) + (x = 1)*(y +2)..
4.3 Explicit and Implicit Functions

The explicit function is one which is given in the independent variable. On the other hand,

implicit functions are usually given in terms of both dependent and independent variables. Here we read
in details:

Explicit function

If we consider set of # independent variables x,x,,x;.....,x, and one dependent variable u, the

equation
— *
u=f (X%, X5 X, ) (™)

denotes the functional relation. In this case if y,, y,, ,......, y, are the n arbitrarily assigned values of the

independent variables, the corresponding values of the dependent variable u are determined by the
functional relation.
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The function represented by equation (*) is an Explicit function but where several variables are

involved, then it is difficult to express one variable explicitly in terms of the others. Thus most of the
functions of more than one variable are implicit function, that is to say we are given a functional relation

B( X, Xy, X;ecrs X, ) =0

connecting the n variables x,,x,,x;......,x, and is not in general possible to solve this equation to find an

explicit function which expresses one of these variables say x,, in terms of the other » —1 variables.

Implicit function

Let F(x,,Xx,,....,X,,u)=0 )]

be a functional relation between the n+1 variablesx,,x,,...,x,,uand let x, =a,,x, =a,,..., X, =a_ be
a set of values such that the equation.

F(a,,a,,...,a,,u)=0 (2)
is satisfied for at least one value of u, that is equation (2) in u has at least one root. We may consider u as
a function of the x's : u=¢(x,X,,....,x,)defined in a certain domain, where ¢(x,,x,,...,x,)has
assigned to it at any point (X,,X,,...,X,) the roots u of the equation (1) at this point. We say that u is the
implicit function defined by (1). It is, in general, a many valued function.
More generally, consider the set of equations

E(X,Xp50 X500, ) =0 (p=1,2,...,m) 3)

between the n+m variables x,,...,x, ,u,,...,u, and suppose that the set of equations (3) are such that

m

there are points (x,,X,,...,x,) for which these m equations are satisfied for at least one set of values

u,,u,,....,u_ We may consider the u’s as function of x’s.

u, =4, (x,,X,,....X,) (p=1,2,...,m)

where the function ¢ have assigned to them at the point (x,,X,,....,x,) the values of the roots
u,,u,,...,u, at this point. We say that u,,u,,...,u, constitute a system of implicit functions defined by
the set of equation (3). These functions are in general many valued.

Definition 1 (Implicit function of two variables). Let f(x,)) be a function of two variables and
y=¢(x) be a function of x such that for every value of x for which @#(x) is defined, f(x,d(x))
vanishes identically i.e., ¥y =@(x) is a root of the functional equation f(x,y)=0. Then, y =¢(x) is an
implicit function defined by the functional equation f(x, y)=0.

4.3.1 Implicit function theorem.

This theorem tells us that whenever we can solve the approximating linear equation for y as a function
of x, then the original equation defines y implicitly as a function of x. This theorem also known as
Existence theorem.
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Theorem 1 (Implicit function theorem). Let F(u, x, y) be a continuous function of variables u, X, y.
Suppose that

1 F(uy,a,b)=0;

(i)  F(u, a, b) is differentiable at (u,,a,b);
. . .. OF
(ii1))  The partial derivative a—(uo, a,b) #0.
_Ou

Then there exists at least one function u = u(x, y) reducing to u, at the point (a,b)and which, in the

neighbourhood of this point, satisfies the equation F(u, x, y) = 0 identically.

Also, every function u which possesses these two properties is continuous and differentiable at the point
(a, b).

Proof. Since F(u,,a,b)=0 and E(uo,a,b) # (0, the function F is either an increasing or decreasing

function of u when u=u,. Thus there exists a positive number 6 such that F(u,-o,a,b)and
F(u, +J,a,b) have opposite signs. Since F is given to be continuous, a positive number 1 can be found

so that the functions
F(u,-0J,x,y)and F(u, +9,x,y)
the values of which may be as near as we please to

F(u,—-d,a,b)and F(u,+0,a,b)
will also have opposite signs so long as |X —a| <nand |y—b| <n.

Let x, y be any two values satisfying the above conditions. Then F(u, X, y) is a continuous function of u
which changes sign between u, -6 and u,+J and so vanishes somewhere in this interval. Thus for
these x and y there is a u in [u, —J,u, + J] for which F(u, x, y) = 0. Thus u is a function of x and y, say

u(x, y) which reduces to u, at the point (a, b).

Suppose that Au,Ax,Ay are the increments of such function u and of the variables x and y measured

from the point (a, b). Since F is differentiable at (u,,a,b) we have
AF =[F (uy,a,b)+ €]Au+[F. (u,,a,b)+ € JAx +[F, (uy,a,b)+ €"]Ay =0.

Since AF =0 because of F = 0. The numbers €,€',€"tend to zero with Au,Ax & Ay and can be made

as small as we please with 6 & 77. Let 6 and 77 be so small that the numbers €,€',€" are all less than

1
5 Fu(uo,a,b)

, which is not zero by our hypothesis. The above equation then shows that Au — 0 as

Ax — 0 and Ay — 0 which means that the function u = u(x, y) is continuous at (a, b).
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Moreover, we have

[Fx (uo,a,b)+ € '}Ax+[Fy (uo,a,b)+ € "}Ay
F (uo,a,b)+e

Au=-

F b
:_Fx(uoaaab)Ax_ y(uo’a’ )Ay+€1 Ax+€2 Ay,
Fu(uo,a,b) Fu(uoaaab)

€, and €, tending to zero as Ax and Ay tend to zero.

Hence u is differentiable at (a, b).

F
Corollary 1. If Z— exists and is not zero in the neighbourhood of the point (u,,a,b), the solution u of
u

the equation F = 0 is unique. Suppose that there are two solutions #, and u,. Then we should have, by

mean value theorem, for u, <u'<u,

O=F(ul,x,y)—F(uz,x,y)=(u1 —uz)Fu (u',x,y),
and so F, (u,x,y) would vanish at some point in the neighbourhood of (u,,a,b) which is contrary to
our hypothesis.

Corollary 2. If F(u,x,y) is differentiable in the neighbourhood of (u,,a,b), the function u = u(x, y)
is differentiable in the neighbourhood of the point (a, b).

This is immediate, because the preceding proof is then application at every point (u,x, y) in that

neighbourhood.
4.3.2 Inverse function theorem.
Corollary 1 is of great importance, for a function of two variables only, (u,x)zO and taking

F (u,x) =f (u)— x , we can express the fundamental theorem on inverse functions as follows:

Theorem 1 (Inverse function theorem). If, in the neighbourhood of u =u,, the function f (u) is a

continuous function of u and if
D flug)=a
i)  f'(u)=0
in the neighbourhood of the point u =u,, then there exists a unique continuous function u = ¢(x),

which is equal to u, when x = a, and which satisfies identically the equation

flu)-x=0,
in the neighbourhood at the point x = a.

The function u = ¢(x) thus defined is called the inverse function of x = f(u).
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4.4 Higher Order Differentials

Let z= f(x,y) be a function of two independent variables x and y defined in a certain domain
and let it be differentiable at the point (x,y) of the domain. The first differential coefficient of z at the
point (x, y) is defined as

dz =8—Zd +%dy (1)
ox oy

and if % and S—Z are differentiable at the point (x,y), then the differential coefficient of dzis called
x Y

second differential coefficient of z and is denoted by d’z and is given by

dz=d| Cavs Eay
ox 0Oy

=d(aZde vd| & \ay )
Ox oy
2 2
Now, d(@j _0E s O gy
ox) ox’ 0yox
2 2
and d[@j 0’z dx a—dy
) oy O

Putting these values in (2), we get

0’z 82 0’z
d’z= (dx) dxdy+—(dy)
ox? ayax ay
8 o Y
Thus, d’z= (—dx+—dyj z
ox oy
8 o Y
Similarly, dz=|—dc+—dy| z
Ox oy

Proceeding in this manner, we define the successive differential coefficients d*z,d’z,.......... .

Thus, the differential coefficient of nth order d z exists if d"'z is differentiable i.e. if all the partial
derivatives of (n-1)th order are differentiable. Thus, by mathematical induction, we have

T2 ey n 02 gertgy M0 02 gargyy +2nf(dy)”
iy

d"z= X) +n
Gx"( ) ox" 'y 2! ox" oy’
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= 9 dx+ 9 dy | z.
ox oy
4.4.1. Choice of independent variables
Let F(x,y,z)=0 (1)

Differentiate (1), we get

a—Fa’x+a—Fd)H—a—Fa’Z=O (2)
Ox oy 0z
Now, if z is dependent on the two independent variables x and » in such a way that the equation

F(x,y,z)=0 is satisfied by z =z(x,y), then

dz=%dx+%dy 3)
ox oy

Now, equation (2) can be written as

F F
dz=—"dx——2d 4
F F y 4)

Comparing (3) and (4), we get
oz F, @ B i

o F' o F

z z

Similarly, if x is dependent on y and z then

@: Fy ox _F,

2

o F' & F
Similarly, if » is dependent on z and x, then

wy__ K Q_ F
Ox F’ 0z F

y y

4.4.2 Higher order derivatives of implicit functions

Let f(x,y,z)=0 be a functional relation where z is dependent variable such that z =2z(x, y).

2 2 2
We denote the partial derivatives @,a—z, 0 f , oz ’6 j
Ox Oy Ox~ 0Oxd0y Oy

by p, g, 1, s, t respectively.

Now, we suppose that x is dependent variable so thatx=x(),z). Then, we will show that how to

express partial derivatives of first and second order w.r.t. y and z interms of p, g, 1, s and t.

Since z=2z(x,y)
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= dzzﬁdyﬁ—%dy. (1)
ox oy

Now, we differentiate (1), taking x as dependent variable, dy and dz as constant so that

= Ozd(@jdx+%d2x+d & dy
ox ox oy
2 2 2 2
:a—f(dx)2+ 0z dydx+%d2x+ 0z a’xa’y+a—f(dy)2
ox Ox0y ox OxOy oy
= r(dx)2 + 2sdx.dy + t(a’y)2 + pd’x. (2)
Now, from (1)
dz = pdx+qdy 3)
= dx:l(dz—qdy) (4)
p

Now, putting the value of dx in (2), we get

2
0= r{l(dz—qdy)} +2s [l(dz—qdy)} cz’ert(a’y)2 + pd’x
p P

= —pd’x=r. 5 [(dz)2 +q° (a’y)2 —2qdz.dy} +2s %(a’zdy—q(dy)2 )} +t(dy)2

2
r 2 (rg”  2sq 2 (25 2qr
=—(dz) +| —5—+1 |(dy +(——— dzdy
7(dz) [ 5 j( [

> —2spq+tp’ —~
=%(dz)2+ rq S}zq D )(dy)2+(2sp 2qr)

5 dzdy
p p p

2pags —rg* —tp? 3
o ey L) R 2)
p p p

dzdy. (5)
From (4), we have

o — Coefficient of g, in (4)=+ l;

82 p

o _ Coefficient of dy in (4)=-2Z.
p

oy

From (5), we have
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2
6_); = Coefficient of (dz)2 in (5)= _L3
oz p
2 -rq’ - p’
% = Coefficient of (a'y)2 in (5)= 2145 r? —
Y
2 2gr-2
0'x = l Coefficient of dydz in (5)= lw
oyoz 2 2 P
qr—sp
= 3 .
p

4.5 Change of Variables

In problems involving change of variables it is frequently required to transform a particular
expression involving a combination of derivatives with respect to a set of variables, in term of
derivatives with respect to another set of variables.

*w 0w

Examplel. Let w be a function of two variables x and y, then transform the expression e + 57 by
x o4

the formula of polar transformation x =ucosv, y =usinv.

Solution. Here, x=x(u,v)
dx = o du+ o dv
ou ov
= cosv.du —usinv.dv (1)
Since v =y(u,v)
dy = ¥ du + & dv
ou ov

=sinv.du +ucosv.dv (2)

Multiplying (1) by cosv and (2) by sinv and adding, we get
du = cos v(dx)+sinv(dy) 3)

Multiplying (1) by sinv and (2) by cosv and subtracting, we get

dvz_s1nv(dx)+cosv(dy) @)
From (3) and (4), we get

ou ou .

—=cosv, —=sinv

ox oy
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ov_ sinv  Jv  cosv

ox u oy u

Now, — 4 ——
Ox Ou Ox Ov Ox
ow [ sinvj@w
=cosV—+| ——— |—
Ou u )ov
= [cosvi— sy i)w (5)
ou u ov
Similarly ow = (sin vi 4057 gj (6)
oy ou u ov
2
Now 0 ?zi(a—wj
ox ox\ Ox
0 sinv 0 ow sinv ow
=| cosy—— — || cosyv—— —
ou u ov ou u ov
, O'w sinvcosv 0°w sinvcosv Ow sinvcosv 0w
=C08" V—5 — + > -—
ou u ouov u ov u ouov
sinv ow sinvcosv ow sin’v 0*w
A 2 -t 2 2 (7)
u ou u ov u- ov
_Coszvﬁzw_Zsinvcosv &’w sin’v &w sin’v dw  2sinvcos dw
ou’ u Oudv u®>  Oudv u ou u’ ou
.. oO’w ., 0w sinvcosv 0°w sinvcosvOow cos’ v ow
Similarly - =sin"v—; — —— —
oy ou u oudv u ov u Ou
sinvcosv &*’w  cosvsinv ow cos’v 0w ®)

u ouov - u’ g u’ o’
Adding (7) and (8), we get
o’w  O*w B 0*w l@_w L 0*w

+ = + + :
ox> oyt out uodu u o’

Example 2. Transform the expression

e een2) ()

by the substitution x =rcos@,y=rsiné.

Solution. We wish to express z as a function of x and y where x and y are the functions of » and

0 ie. z=2z(x,y) and given x=x(r,0), y=y(r,0).
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dx =@dr+a—xd0
or 00

=cos @dr +(—sin6.r)dbf

=cos@dr—sin0.rdo (1)
Similarly dy = ? dr+ % do
r
=sin @dr +rcos 0d 6 (2)

Multiplying (1) by cosé and (2) by sin & and adding, we get
dr = cos Odx +sin Ody 3)
Multiplying (1) by siné and (2) by cos @ and subtracting, we get

sin @

_cost

do dy

r r

dx 4)
From (3) and (4), we get

gzcosﬁ, =sind

o
ox oy

00 cos6 00  sinf

o r 0
@_6287 oz 00

Now, = —
Oox Orox 00 ox

Oz sinf Oz
=cosf—— —
or r 00

(azf ( oz sineazJ2
— | =|cos@—-— —
ox or r 00
82)2+sin2¢9(82j2_2sin6?cos6? 0z

= cos’ 6’[— — | —
or r 00 r orod

©)

(6)

e 0z O0zor 0z 00
Similarly — =t ——
oy oOroy 06 oy

0z cosd ﬁ

=sin@—+
or r 060

2 2 2 2 . 2
24 :sinze(%] +cos2 9(@] | 2sinfcost 0’z @®)
y or 00 r oro6

(7

r
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Adding (6) and (8), we get

(szz oz Y (GZT l(azjz
_ +| — - — +—] —
ox oy or r*\ 00

Multiplying (a* —7*) on both sides,

s 2 oz Y 822_22 oz 1(ozY
@ >{(5] (5] }‘(“ - ){(5] *?(%)} ®)

Multiplying (5) by x and (7) by y and adding,

0z Oz oz 1 0z
—+ypy—=(xcos@+ysin@)—+—(ycos@—xsin@)—
Yo oy (x ysin@) 2+ (v xsin0) =5
2 .2 N0z T, ) oz
:(rcos 0 +rsin 0)—+—(sm000s49—cos6?sm6?)—
or r 00
Oz
=y—
or

Squaring on both sides,

2 2
x%+y@ =r? (%J (10)
ox = Oy or
Adding (9) and (10), we get required result
0z 822 s o oz Y 622 28221822 oz Y
x—+y—|t@-r)— |+ =— | (=a = |t == | —| =
ox = Oy ox oy or r -\ 06 00
( Pt =x +y2)
Example 3. If x =rcos@, y=rsinf then prove that

ax2 &)}2

whereu is any twice differentiable function of x and y .

Yoo o7 o o6

(xz_yz)(ézu azuj+4 azu_ 2@ ou 0Ou

Solution. Here, x=x(r,0)
dx = o dr + o de
or 06
=cos@dr —rsin8do (1)

Since y=y(r,0)
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dy = ﬁ_ydr+a_yd9
or 00
=sin@dr +rcos0do

Multiplying (1) by cos@ and (2) by sin# and adding, we get
dr = cos Odx +sin Ody
Multiplying (1) by siné and (2) by cos @ and subtracting, we get

_51n6?dx+cos6?dy

r r

dg=

From (3) and (4), we get

@:cosﬁ, or

ox oy
%__sin@ 00 cosd

b

ox 5_ r

=sinfd

ou_oudr  oudo
Ox Or Ox 00 ox

—a—ucosé’—a—usmg

"~ or 06 r

Now,

Similarly —= (sin 0—+
2
Now. Pu_o (@)

= (cosﬁg— Sm@ij(cos Ha—u— s1n¢98_u

or r 00

0u B sinfcos@ 0°u sinBcosO ou B sinfcosf@ 0’u

= cos’ §— + > —
or r orod r 00 r

sin? 98_u+ sin@cos@@_u sin’ @ 0*u
r or P 06 rt 06?

0’u 0u N sin@cos® O*u sinfcosé ou

orof

cos’ 6 ou

Similarl — =sin’@ — —
Y o - o080~ 00

r

or

2)

3)

(4)

)

(6)

(7
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. sin@cosf O’u _cos@sin@ du cos’ @ du
r orod P 00 rr 06°
Subtracting (8) from (7), we get

*u  o'u O*u sin26 o*u  sin20 ou sin20 Ou
—5 = |=c0820—— t——
ox or r orod r- o0 r  orof

~ 005298_u+ sin26 du _ cos26 0u
r or 06 r* 06°

and we have

(x2 —yz) =7’ ((:os2 0 —sin’ 6’) =7’ cos26

2sin 26?6_u cos2498_u

(®)

2 2 2 2 : 2
(xz_yz)(au a—z‘jﬂzcosze{cosze[a“ 6uj_2sm26’ Ou

—— - +
ox’ Oy or’ 06’ r  orof
9
2
N Pu_ofa
Ox0y Ox\ Oy
( 0 sinf 0 j( ou cosd 6u)
=|cos@—— — || sin@—+ —
or r 00 or r o060

r

0*u cos’0 ou B cos’ @ du B sin @ cos @ ou

=cos@sinfd +

or? r orod 7’ % r 5
_sin2 6 d*u _sinfcos @ 0u s sin’ 6 ou
r O6or P 06* r* 00
2 2 2 2
4 Ou =2r*sin26 sin@cos@a—ijrlcosZ@ Ou _cos2 0 ou
Ox0y or~ r orof r- 06

_sinfcosf du sinfcosd 0*u  sin? 0 ou

r o r 00’ r
Adding (9) and (10), we get required result.

Example 4. If x =rcos@, y=rsin@, then show that

2
oo =77 cos26.
OxOy
Solution. Here, x=x(r,0)
ox ox

dx=—dr+—do
or 00

00

2

00

] (10)

r

or

|
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=cos@dr—rsin0do

Since y=y(r,0)
dy = a—ya'r +a—yd6’
or 06
=sin@dr +rcos 8d6o

Multiplying (1) by cosé and (2) by sin @ and adding, we get
dr = cos Odx +sin Ody
Multiplying (1) by siné and (2) by cos @ and subtracting, we get

dH:—Slngdx+cosgdy
r r
From (3) and (4), we get
@:cosﬁ, gzsinﬁ
ox oy
%__sin@ 060 _cosd
ox ro o r

From (4), rd @ =—sin Odx + cos Ody.

Now differentiating, we get

drd @ + rd*6 = —cos 6d Bdx — sin 6d Ody
= —(cos &dx + sin &dy)d@
rd*6 = —(cos Gdx + sin @dy )d 0 — drd 0
= —(cos Gdx + sin Gdy )d O — (cos Gdx + sin By )d &

= —2(cos Gdx + sin Ady)d &

= —2(cos Gdx + sin Qdy)(— sin0 dx+ <2 0 dy)

r r

2 . .
d’6 = ——(cos Gdx + sin &y )~ sin dx + cos Gy )

r

= —%(— sin @ cos Bdx” + cos 20dxdy + sin 8 cos Ody” )

r

2 2
a—?a’x2 +2 0o
Oox ox

As d*0=

2
dxdy + %dyz , SO we get
@}2

(1)

)

€)

(4)
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0’0
oxoy

=—r cos20.

4.6 Extreme Values of Explicit Functions
We now investigate the theory of extreme values for explicit functions of more than one variable.
Definition 1. Letu = f(x, )) be the equation which defines u as a function of two independent variables

xand y. Then, the function = f(x,y) has an extreme value at the point (a,b) if the increment

A = f(a+h,b+k)— f(a,b) preserves the same sign for all values of h and k such that |h| <0, k| <0

where & is a sufficiently small positive number. If Af is negative then the value is maximum and if Af

is positive then the value is minimum.

Necessary condition for extreme value

The necessary condition that f(a,b) should be an extreme value is that both f. (a,b) and f,(a,b)are

zero. Values of (x, ) at which df =0 are called stationary values.

Or A necessary condition for f(x,y) to have an extreme value at (a,b) is that f,(a,6) =0, f, (a,b)=0

provided that these partial derivatives exist.

If f(a,D) is an extreme value of the function f(x,)) of two variables then it must also be an extreme

value of both the functions f(x,b) and f(a,y) of one variable.

But the necessary condition that these have extreme values at x=a and y=D>b respectively is
f.(a,b)=0 and f,(a,b)=0.

Sufficient condition for extreme value

The value f(a,b) is an extreme value of f(x,y) if f,(a,0)=0, f,(a,b)=0 and also f..f,, >(fxy )2

and the value is maximum or minimum according as f,. or f, isnegative or positive respectively.
Here, A=f_, C=f,, B=f,

(i) If AC—B*>0, then f(a,b) is a maximum value if 4<0 and a minimum value if 4> 0.

(ii) If AC—B* <0, then f(a,b) is not an extreme value.

(iii) If AC—B’ =0, this is doubtful case, in which the sign of f(a+h,b+k)— f(a,b) depends on A

and k and requires further investigation.

Example 1. Find the extreme value of the function f(x, y) = x> —xy+ > +3x =2y +1.
Solution. Here,  f(x,y)=x"—xy+ 1> +3x-2y+1

S f.=2x—y+3, f.=2
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f,=—x+2y-2, S =2, Sfo=-1.

For extreme values, f, =0, f, =0

S 2x—y=-3and—x+2y=2

* —l x—_i
Ly 3 3
oL 41
Thus, the extreme point is (_5’5]
A 41 A=f_=2
t —E,E, _fxx_ ,B=f)(y=—1,C=fxy=2
Now, AC—B*=4-1=3>0and 4=2>0
4 1). . .. .. 4 1
33 is a point of minimum and minimum value= f 33
=E+i+l—4—g+1:—i.
9 9 9 3 3

Example 2. Show that f(x,y)=2x"-3x’y+y* has neither maximum nor minimum at (0, 0).
Solution. Here, f(x,y) =2x" —3x’y+y’

o f.=8x"—6xy, f.=24x" -6y

f,=-3x"+2y, £, =2, f, =—6x

For extreme values, f =0, f =0

8x’ —6xy =0and-3x* +2y =0

2

2x(4x* =3y) =0and y :%

2
.'.x=00ry=4x
If x=0=y=0
4x* 3x? 4x*  3x?

If y= and y = 5 = PR , which is not possible.

So, stationary point is (0,0).
Now, 4=/.0,00=0, B=/,(0,00=0, C=f,(0,0)=2
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S AC-B*=0-0=0

So, doubtful case and further investigation is required.

Now, Af = f(0+h,0+k)— £(0,0)
= f(h,k)~ £(0,0)
= 20" —3Wk+ k> = (2K —k)(h® —k)

If 72—k >0 and 20—k >0 i.e. I >k and i >§ then Af >0,

If 7 —k <0 and 2% —k >0 ie. i <k and I° >§ then A <0,
So, for different values of & and k, Af does not have the same sign. Hence, f has neither maximum
nor minimum at (0, 0).
Example 3. Find the extreme value of x° —3axy +y’;a > 0..
Solution. Here,  f(x,y)=x" —3axy+ )’
o f.=3x"-3ay, f.. =6x
fy=3y2—3ax, £, =6y, foy =-3a
For extreme value, we put f. =0, f,=0

3x* =3ay =0and3y’ —3ax =0

2 2

y:x—andx:y—

a a

After solving, the stationary points are (0, 0) and (a,a).

Now, A=f,(0,00=0, B=f,(0,00=-3a, C=f,(0,0)=0
AC—-B* =-94" <0at (0,0).

So, given function has no extreme value at (0,0).

Now, A4=f (a,a)=6a, B=f (a,a)=-3a,C=f, (a,a)=6a
AC—B* =36a"—9a’ =274 >0 at (a,a).
& A=6a > 0

Hence, the given function has minimum value at (a,a).
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3 3
Example 4. Letu =xy +—+—,

x Yy
ou_ a
ox x?
ou a’
—=X——.
oy y

Putting x=a,y=a

82u_2a3_2 0*u _q @_2_(13_
o’ X T oxoy

Hence

Therefore r and t are positive when x = a =y and rt- s? = 2.2-1= 3 (positive). Therefore, there is a

minimum value of u viz. u = 3a?.
Example 5. Let
flx,y) = y2+ x%y + x*.

It can be verified that
£(0,0) = 0, £,(0,0) =0
fex(0,0) = 0, f,(0,0) =2
fy(0,0) = 0.

So at the origin, we have

fexfyy = fey™.

However, on writing

2 2 4 _ 1 2v2, 3x*
yotxty+xt= (y+ox) + -

It is clear that f(x, y) has a minimum value at the origin, since
h%,, , 3h*

AF = f(hJ) = £(0,0) = (k +%)2 4 2

is greater than zero for all values of h and k.

4.7 Stationary Values of Implicit Functions

To find the stationary values of the function
FACTE T X, Uy Uy e Ju,) (1)

of (n + m) variables which are connected by m differentiable equations
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(pr(xl,xz, ............. 3 Xy s Uy s Uy ,um):0;r=1,2, ................ ,m (2)
If the m variables u ,u,,............. ,u, are determinate as functions of x,,x,,........... ,x, from the system of
m equations of (2), then f can be regarded as a function of n independent variables x,,x,.,........ , X, .

At a stationary point of f, df =0.

Hence at a stationary point, 0 = df = f, dx, + f, dx, +........ + fodx, + f, duy F + f, du,
3)
Again differentiating the equation (2), we get
%ler ......... +ﬁdn+%d L F e, +8¢1 du, =0
X, ox, Ou, u,,
%d1+ ......... +%dn+%dl+ .......... + ¢2dum—0
X, ox, ou, u,
..................................................................................... 4)
0 0
I dx, +........ + b dx, + I du, +.......... + S du, =0
Oox, ox, ou, u,
From these m equations of (4), the differentials du,,du,,............... ,du, of the m dependent variables

may be found in terms of the n differentials dx,,dx,,......... ,dx, and are substituted in (3). This way df

has been expressed in terms of the differentials of the independent variables, and since the differentials
of the independent variables are arbitrary anddf = 0, the coefficients of each of these n differentials may

be equated to zero. These n equations together with the m equations of (2) constitute a system of (n + m)

equations to determine the (n + m) coordinates of the stationary points of f.

Example 1. F (x, y,z) is a function subject to the constraint condition G(x, Vv, z) =0. Show that at a

stationary point.
F.G,~F,G, =0.
Solution. We may consider z as a function of the independent variables X, y.
At a stationary point, dFF =0
0=dF =F.dx+F,dy+F.dz. ey
Differentiating the relation G(x, v, z) =0,we get
G.dx+G,dy+G.dz =0. (2)

Putting the values of dz from (2) into (1), or what is same thing, eliminating dz from (1) and (2), we get
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(F.G, -G.F.)dx+(F,G. -G ,F. Jdy =0

Since dx,dy (being differentials of independent variables) are arbitrary, therefore

FG.~G,F,=0
F.G -G F.=0
which gives F.G,-GF, =0.

4.8 Lagrange Multipliers Method

In this method, we discuss the determination of stationary points from a modified point of view. This
process consists in the introduction of undetermined multipliers, a method due to Lagrange. After his
name, this method also called Lagrange’s method of undetermined multipliers.

Letu = ¢( X4, X5, ..., X,) be a function of n variables which are connected by m equations

fi(x1, X0, 0, Xp) = 0, f5,(X1, X2, o, Xp) = 0, oo, frn(Xq, X3, ., Xp) =0,
So that only n-m variables are independent.

When u is maximum or minimum

du=—d + d +—dx3+ +—dxn—0
Also dfl—afld +"f1d +af1d +- +af1 dx, = 0

df, = ade +af2d +af2d +- +af2d =0

df,, = ‘;f’:d +af’“d +

Multiplying all these respectively by 1, 44, 1,, ..., /1n and adding, we get a result which may be written
PldX1+P2 dX2+P3dX3+"'+ Pnan =0,

Where P, = —+ Alaf1+lzaf2+ Ay Y

m 5x,

The m quantities A4, 4,, ..., 4,, are of our choice. Let us choose them so as to satisfy the m linear
equations

P] = P2 T e = Pm.
The above equation is now reduced to

Pry1dXmy1 + PrpiodXpip + -+ Pydx, = 0
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It is indifferent which n-m of the n variables are regarded as independent. Let them be
Xma1» Xm+2, - Xn. Then since n-m quantities dx,, .1, dXp40,...dx, are all independent, their
coefficients must be separately zero. Thus we obtain the additional n-m equations

Pm+1:Pm+2: ............. :Pn: .

Thus the m+n equations f; = f, = ............. =f,=0and P, =P, = ............ = P,=0 determine the m
multipliers A4, 4,, ..., 4,, and values of n variables X, X, ..., X, for which maximum and minimum
values of u are possible.

2 2 2
Example 1. Find the length of the axes of the section of the ellipsoid e Z—z + i—z = 1 by the plane

a2

Ix +my+nz=0.

Solution. We have to find the extreme values of the function 72 where 2 = x2 + y? + z2, subject to
the equations of the condition

x2 y2 ZZ
a2ty tae-1=0

Ix + my+nz=0.

Then xdx +ydy + zdz = 0 (1)
%dx—l—by—zdy+cz—2dz=0, Q)
ldx + mdy + ndz =0 3)

Multiplying these equations by 1, 44, 1, and adding we get

X+ A=+ Al =0 )
a
y _

y+ﬂqb—z+ﬂzm—0 (5)

242+ An=0 (6)
C

Multiplying (4), (5) and (6) by x, y, z and adding we get

2 2 2 x? ¥y, 7 —
(x*+y +Z)+/’ll(?+b—2+c—2)+iz(lx+my+nz)—O

or >+, =0= A = —r2
From (4), (5) and (6), we have
— lzl Azm 7 = /1271

) Y= 2 4= 2
(z~D Gz~ (=zD
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l2 2 2b2 2.2
Butlx+my+nz—0—rﬂz( 2+T 5 ch
-a r=b" r-c

> j =0 and since A, # 0 the equation giving the
values of r2, which are the squares of the length of semi-axes required (quadratic in #°) is
I’a’ m’b* n’c’
( 2 2 + 2 2 + 2 2 j = 0 :
rr—a r —-b" r—c

Example 2. Investigate the maximum and minimum radii vector of the sector of “surface of elasticity”
(o’ +y +2° ) =a’x*+’b’+2°¢” made by the plane Ix + my + nz = 0.

Solution. We have

xdx+ ydy +zdz =0 (1)
a’xdx+b’ydy+c’zdz=0  (2)
ldx +mdy +ndz =0 3)
Multiplying these equations by 1, 4,4, and adding we get
x+a’xA, +12, =0 4)
y+b’yA +mA, =0 %)
z+c’zA +nd, =0 (6)
Multiplying(4), (5) and (6) by x, y, z respectively and adding we get

(x2+y2+z )+21(a x> +y°h +chz)+/?2(lx+my+nz):o

1
=7+ Ar' =0 :>/11=—r—2

S Alr? y A,mr? A,nr’
= = z = .
at—r2’ pE_ 2’ JER
AU Am’rt An'r’
Thenlx + my + nz =0 = ———+->2 +———=0.

= +
rr—a® rr-p rr=¢t

It is quadratic in 7 and give its required values.

Example 3. Prove that the volume of the greatest rectangular parallelepiped that can be inscribed in the

8(5 C) -1 -1 -1
3“9 _
m—ﬂﬁ‘y Y+o a—i—ﬂ.

O (A7)

ellipsoid
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Solution. Volume of the parallelepiped = Gxy=z. Its maximum value is to find under the condition that it
2 2 2

is inscribed in the ellipsoid x_2 +2}—2 +Z—2 =1, we have
a c
% = QXY
-] - E}
hi=Gegegen
Therefore
du = Byzdx + Bxady + Bxydr = O (1)
df, :2—)2cdx+2—fdy+2—22dz:0 (2)
a b c

Multiplying (1) by 1 and (2) by 4 and adding we get

yE+-2=0 3)
a

x+2 =0 (4)
b

Xy +—=A=0 (5)
C

From (3), (4) and (5), we get

2 2 2
_ayz_ b X _

A=
x y z

2 2 2
a’yz b'zx c’xy

and so
X y z

Dividing throughout by xyz we get
2 2 2 2 2 2
“_r_c (-.-x_z+y_+z_=1].
b

2
Hence 3i=1 or x=—= Similarly y=i, z
NE)

c
- <
2 3 NE

X

8abc

33

Example 4. Find the point of the circle x

It follows therefore that u = 8xyz =

2 2

+y* + 27 = 1, Ix+my+nz=0at which the function
u=ax’ + by2 +el + 2fyz + 2gzx + 2hxy attains its greatest and least value.

Solution. We have
u=ax’+ by’ +cz’ + 2fyz + 2gzx + 2hxy

fi=Ix+my+nz
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fi=x"+y + 22— 1
Then
axdx + bydy + czdz + fydz + fzdy +...+ gzdx + gxdz + hxdy + hydx
ldx +mdy +ncdz = @
zdx+ydy tzdz=0
Multiplying these equations by 1, 4,4, and adding, we get
ax+hy+gz+ A1+ 4,x=0
br+hx+ fo+Agm+Agy=o
crtgx+fr+dmtdzmi
Multiplying by x, y, z and adding we get
wtdg =@ = A,m-u
Putting all the values in the above equation we have
sa=—ul +hyr+gs+ id, =0
hx+y(b-u)+ fz+mA =0
gx+fr+oic—uw+nd, =@
ktmyr+nr+0=0.

Eliminating X, y, z and 1, ,we get

&= T i & 1
h B - f ml_
& F C—u 1 '
m 1 1}
Example 5. If a, b, ¢ are positive and
_ Eﬁg.‘ng—fkgyg—l-cgzg:] . 2 a
u = xlplpd> OF +Ey°tez"=1,
Show that a stationary value of u is given by
I ¥ 2___ B S
T Rmer? T mumm ' T T
where p is the +ve root of the cubic
P =(bo+catablpy—2abcmp,
Solution. We have
e 0 e S 1
- xByBgs )

axt+ byl + ezl m )
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Differentiating (1) we get

2 2
345 Jaeeo

x\z" vy

which on multiplication with x%y2z? yields

Zl( y? +czzz)dx:0

X
Differentiating (2) we have
Lardy =
Using Lagrange’s multiplier, we obtain
?EEE}'"" + iz m par
1e. Fyd 4otz o gaxt
efrt 4 atxt wm ghyt
@t % 4+ byd m ozt
Then (6) + (7) - (5) yields

Zatxt= u(byt + czl- ﬂﬂ'z:]

= u(1-2ax?) (By (2))
Therefore
Zala +ulx*=u
3 _ &
=z Zalotps
.. o 3 o = B
Similarly ¥* = AT and z ror——

Substituting these values of x#, %,z in (2), we obtain

3 3 B —q
P 3 + L 3 + TioEpd

which equals to

B o= (be % oo+ ab)y —2asc=Q,

3)

(4)

()
(6)
(7

®)

Since a, b, c are positive, any one of (5), (6), (7) shows that y must be positive. Hence p is a positive

root of (8).
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4.9 Jacobian and its Properties

In this section, we give definition of Jacobian and discuss its properties.

4.9.1 Jacobian

If Wy Uy weep Uy be n differentiable functions of the n variables ey p Higp e p By then the determinant

Oou,  Ou, ou,
6_xl , 8_x2 yeees a
Ou,  Ou, ou,
6_xl , a—xz, e a—xn
ou, Ou, ou,
o, ox, T o,

is called the Jacobian of u,,u,,...,u, withregardto Xx,,x,,...,x,. The determinant is often denoted by

0(X,, Xy 5ueens X)) (X, Xy 5000 X,)
or shortly J, when there can be no doubt as to the variables referred to.

Theorem 1. If u ,u,,...,u, be n differentiable functions of the n independent variables x,,x,,...,x, and

there exists an identical differentiable functional relation ¢{u,,ug, w.,u, )} = & which does not involve
the x’s explicitly, then the Jacobian

flu, il
& (g tgmity )

vanishes identically provided that ¢ as a function of the u’s has no stationary values in the domain

considered.
Proof. Since
PO Uy s U} = €

We have

r:f.u.l+ rf. +"'+—r:f-u (1)

But
d ﬁ"-'h m-l}ﬁ'i'rm.klu-l}ﬁ'-h

(ARl lII BN BEN BEE BEE lII BEE BEN WEE BEE BET I||l (2)

& fa fa
= g, + By + et Py

On substituting these values in (1) we get an equation of the form

Agdy + Agdng + oo+ A, = 0 3)



Mathematical Analysis 159

And since g, , &%, e, @k, are arbitrary differentials of independent variables, it follows that
A, =LA =0, ..,4, =0

In other words

A ﬂh.}i LA HEr B ’5_51.

fa hr,_ fug” E.!: fuap "Ix,

i & _i. i r|. i a_i.l (4)
fug hr,, "Gy fug "9,

_‘tﬂa+i‘i iu g, r‘igin

Fug Gag | Pag o
And since by the hypothesis, we cannot have

do _ @9 g

— e EE g =E[

du, du, du,

On eliminating the partial derivatives of ¢ from the set of equation (4) we get

[l FRE

Bty
which establishes the theorem.

Theorem 2. If w,ug .., w, be n functions of n variables g, %y w,m, Say
uy, = £ (%%, wiy ), (m=1,2,..,.n0) and if ﬂ_ujﬂ-:_jg &, then if all differential coefficients
0 £ 1 ol

concerned are continuous, there exists a functional relation connecting some or all of the variables
Uy, Ug, ey Wy, Which is independent of s, 525, w55 -
Proof. First we prove the theorem when n=2. We have ¢ wm f(x, v}, ¢ = g(x,%) and

fu ¥

o ﬁy - '}

b b
fx &y

v
If v does not depend on y, then e 0 and so either E = D orelse i—: = {. In the former case u and v are

the functions of x only, and the functional relation sought is obtained from
wm fla)v = g(x)
By regarding x as a function of v and substituting in ¢ = f(x]}, In the latter case v is constant, and the
functional relation is v = a. If v does depend on y, since g 2 {J the equation v = g(x, y) defines y as a
function of x and v, say
¥ =@ (nv),
And on substituting in the other equation we get an equation of the form

w = Fixw).
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(The function F[x, g(x, y)] is the same function of x and y as f(x, y))
Then

fa f8|  er  gF gv E Ei)  Jor o
g m [@F 0| o f8 " Ou"8 &V OF)  lx By

év dv i3 v iy —
&y & &y & ¥

(obtained on multiplying the second row by E and subtracting from the first ) and so, either i—: =0,

which is contrary to hypothesis or else i—; = @, so that F is a function of v only; hence the functional
relation is

u="F()
Now assume that the theorem holds for n—1.

Now u, must involve one of the variables at least, for if not there is a functional relation u, = a. Let one

such variable be called x since gu“ # 0 we can solve the equation
X

u =f (x,X,,....X,)
for x,1in terms of x,,X,,...,X, ;and u_,and on substituting this value in each of the other equations we
get n—1 equations of the form
u, =g (X,X,,...X,,u,), (r=1,2,..,n-1) 1)

If now we substitute f, (x,,X,,...,x,) for u, the functions g (x,,x,,...,X,_;,u,) become

f(X,Xy,00X, ,X,), (r=1,2,...,0=1)

Then
of, of, of,
0X, 8x2’m’6x
of, of, of,
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g,  Og Ou, Og _ Og Ou, Og Ou,
ox, ou, ox,  "ox,, Ou, oOx,, ou, Ox,
g, 08 Ou, Og  Og Ow, Og Ou
=|ox, ou, ox, ' ox,, Ou, Ox,, Ou, OX,
u, du, du,
ox, Coox,, 0x,
% %,
aXl b 9axn_17
% %8
— 8Xl b ’a nil)
aul’l al'ln 6l'ln
ox, ~ox,, Ox

by subtracting the elements of the last row multiplied by

0g, 0g, 08,
ou, 'ou, ~Ou,

from each of the others. Hence

ou, . 0(81,85>-2801) _ 0.
0x, O0(X,,Xy,.0, X, ;)

Since ou, #(0 we must have 081,852 801)
0x, O(X,,Xy50r X

=0, and so by hypothesis there is a functional relation

n-1
between g,,g,,...,g, ,, thatis between u, ,u,,...,u_ , into which u_ may enter, because u_, may occur in

set of equation (1) as an auxiliary variable. We have therefore proved by induction that there is a relation
between u,,u,,...,u,.

4.9.2 Properties of Jacobian

Lemma 1. If U and V are functions of u and v, where u and v are themselves functions of x and y, we

have
o(U,V) _o(U,V) 0(u,v)
ax,y)  0(u,v) d(x,y)
Proof. Let U=1(u,v), V=F(u,v)
u=9(x,y),v=y(xy)
Then au = AU 8_U@
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U _aU u U ov
dy du Oy ov oy

oV 9V du_dV dv

—_ _+_._

ox Ou 0x ov ox
6V_6V ou oV ov

— —t——
dy Ou Oy Ov 0Oy

and

oU ou| [Ou  du

o(U,V) 6(u,v):au 5‘VX8X oy

o(u,v) O(x,y) |0V 0V| |ov ov
ou  ou| |ox oy
U, U v U U v
_|Ou Ox Ov Oox Ou Oy Ov Oy
v vy v avov
ou Ox Ov Ox Ou Oy OV Oy

oU au
ox  dy| a(U,V)
oV V| a(x.y)
ox Oy

The same method of proof applies if there are several functions and the same number of variables.

Lemma 2. If J is the Jacobian of system u, v with regard to x, y and J' the Jacobian of x, y with regard to
u,v,thenJJ =1.

Proof. Let u = f(x, y) and v = F(x, y), and suppose that these are solved for x and y giving
X =¢(u,v) and y =w(u,Vv),

we then have differentiating u = f(x, y) w.rtuand v; v=F(x, y) w.rtuand v

2
2
2

[S—
Il
+

obtained from u = f(x, y)

S
I
+

>y 2|
>l 22

T
22 2l 9| P

+

212 2|y o2 2

obtained from v = F(x, y).

Il
+

R 2|y
2|2 o
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Also JJ =

X

22 22
2le 2w
22 22

+
+

+

SERIE

+

2|2 22 D 2@
SERIE

2l 2|
2l 9@

ol oo
Y|P w2
2| ¥y

[
)

=1
01

Example 1. If u=x+2y+zv=x—-2y+3z

w =2xy—xz+4yz—-27’,

prove that o, v, W) =0, and find a relation between u, v, w.
(x,¥,2)
Solution. We have
ou Ou Ou
ox oy oz
o(u,v,w) |Ov Ov OV
0(x,y,2) lox 5 oz
oW Ow Ow
ox oy oz
1 2 1
=11 -2 3

2y—z 2x+4z —-x+4y-4z
1 0 0
=11 -4 2

2y—z 2x+6z—4y —x+2y-3z
Performingc, — ¢, —2c, and ¢, > ¢, —c,
| -4 2
_2x+6z—4y -X+2y-3z
=0.

|0 2
o -X+2y-3z

Performingc, — ¢, +2c,

Hence a relation between u, v and w exists.
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Now,
u+v=2x+4z
u-v=4y-2z
w=x(2y—-2)+2z(2y-z)
=(x+2z)(2y—2z)
= 4w =(+v)(u—-v)
= 4w =u’ -V’

which is the required relation.
Example 2. Find the condition that the expression px+qy+r1z,p'’x+q'y+1'z are connected with the

expression ax’ + by’ +cz’ +2fyz + 2gzx + 2hxy, by a functional relation.

Solution. Let

u=px+qy-+1z

v=p'x+q'y+r'z

w =ax’ + by’ +cz’ + 2fyz + 2gzx + 2hxy
We know that the required condition is

o(u,v,w)

0(X,Y,2)

Therefore

But
ou ou ou
= =T

x Doy Yo

N _ OV OV
ox p’ay q’az

’

T.

=2ax + 2hy + 2gz

=2hx + 2by + 21z

2|2 2|2
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@=2gx+2fy+202
0z

Therefore
p q r
pl ql r' — 0
2ax +2hy+2gz  2hx+2by+2fz 2gx+2fy+2cz
p q T p q T p q T
:> pl qV rV :O’ pl qV rV :O, pl qV rV :O
a h g h b f g f ¢

which is the required condition.

Example 3. Prove that if f(0) =0, f'(x)= 1;
+

f(x)+f(y):f£lx+y].

Solution. Suppose that

u = f(x) +(y)

X+y

Now J(u, V) =

Pl 22
22 22

1 1

1+x°  1+y’ 0
- 1+y° 1+x> |

(1-xy)>  (-xy)|

Therefore u and v are connected by a functional relation

Let u=0¢(v), that is,

f(x)+f(y)=¢(1"_+x-‘;j

Putting y = 0, we get
f(x) +£(0) = ¢(x)
= f(x) + 0 =d(x) because f(0) =0
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Hence £(x) +£(y) = f{ X+y j
1-xy

Example 4. The roots of the equation in A

(7&—){)3 +(7L—y)3 +(7\,—Z)3 =0
o(wv,w) _ , (y=2)(z=%)(x-y)
o(x.y.z) (v=w)w-u)u-v)

are u, v, w. Prove that

Solution. Here u, v, w are the roots of the equation

MV —xX+y+2)A + (x> +y° +Zz)7\,—§(x3 +y’ +2°)=0

Let X+y+z=§ X +y +7 =1, %(x3+y3+z3)=§
and then u+v+w=E& vw+wu+tuv=n, uvw =
Then from (1),

5 1 1 1

Msz 2y 27| =2(y-z)(z—x)(x—Y)

5(X, Y, Z) x2 yz 72

Again, from (2), we have

1 1

OEm,6) =lv+w w+u  utv=—(v-w)(w-u)(u-v)
o(u,v,w) Wi uv
Then from (3) and (4)

O(u,v,w) _ 0(u,v,w) 0EM.0) _ , (y=2)(z=X)x-Yy)
a(X, Y, Z) a(&’ n, C) ﬁ(x, Y, Z) (V - W)(W - u)(u - V)

Example 5. If o,p,y are the roots of the equation X Y % —iin k,
a+k b+k c+k

then

ox,y,2) __(a-PB-vr-a)
d(a,B,y)  (a=b)(b—c)(c—a)

Solution. The equation in k is

kK +k*(a+b+c—x—-y—-z)+k[ab+bc+ca—x(b+c)—y(c+a)—z(a+b)]

+abc —bex —cay —abz = 0.

()
2)

)

“)

(1)
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Now «,p,y are the roots of this equation. Therefore

and

Then, we have

Now,

Hence

o+B+y=—(a+b+c)+x+y+z

of+By+ya=ab+bc+ca—-x(b+c)—-y(c+a)—z(a+Db)

oy =—abc + bex + cay + abz

l=— ox +— o +@
oo oo oo
8x 8y 82
o 513 GB

1=

x, oy &

EACA

B+y:—(b+c)——(c+a)——(a+b)%

oy

y+a——(b+c)%—(c+a)@—(a+b)—

P op

oc+[3=—(b+c)%—(C+a)%_(a+b)aZ
ﬁY=bc%+caay+ab%
oa. oo oo
Yo = bc§+caay+ab%
BB P
af= b +ca +ap
oy
x oy &
do. oo, dal |y 1 1
ox 0Oy 0z
5 @ » —(b+c) —(c+a) —(a+b)
be ca ab
x oy oz
ay oy oy
1 1 1
=B+y y+a a+p
B’Y Yo OLB
;x E ;(b ¢)(c—a)a—b)=—(a—P)(B-1)(y- o)

ox,y,2) __(a=B)B-1r—-a)

d(a,By)  (b—c)c—a)(a—b)
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Second Method. After the equation (1),

leta+b+c—(x+y+2z)=§

ab+bc+ca—x(b+c)—y(c+a)—z(a+b)=n

abc — bex — cay —abz =( (2)
a+B+y=-€ ap+Py+ya=n, afy=-C (3)
Then
-1 -1 -1
M:—(b+c) —(c+a) —(a+b) =(a—-b)(b—c)c—a).
0%, y,2) ~be —ca —ab
and
-1 -1 -1
%: p+y y+a a+pf
a, b
lp v ap
= —(@=-P)P-1y-a)
Therefore 8(x, Y=Z) — 6(x, y’Z) a(&aﬂa@) - _ (OL _B)(B_Y)(y_a)

A(o,B,0)  AEML) A(ouB,y)  (a-b)b-c)c—a)
Example 6. Prove that the three functions U, V, W are connected by an identical functional relation if
U=x+y—z V=x—y+z W=x"+y*+7>2yz
and find the functional relation.

Solution. Here

ou ou ou
ox oy oz
o(U,V,W) |0V ov ov
0(x,y,2) Tlox g oz
oW oW oW
ox oy oz

1 1 -1
-1 1
2x  2(y—2z) 2(z—-vy)

Il
—

Performingc, —c, +c¢,
1 1
=1 1
2x 2(y—12z)

o © O
Il
=]

Hence there exists some functional relation between U, V and W.
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Moreover,
U+V=2x
U-V=2(y-2)
(U+VY +(U-V) =4(x" +y° +7° —2yz)
=4W

which is the required functional relation.
Example 7. Let V be a function of the two variables x and y. Transform the expression
o’V 0’V
+
ox> oy’

by the formulae of plane polar transformation

X=rcos0, y=rsin0.

Solution. We are given a function V which is function of x and y and therefore it is a function of r and .
From x=rcos0, y=rsin0, we have

r=yx’+y>, O=tan"'y/x.

Now
v _av o v o
ox o ox 00 ox
oV  sin® oV ( or 00 sinOJ
=cos—— — v —=co0s0, —=-—
or r 00 X OX r
And N NX,NXD
dy or dy 00 oy
. OV cosO oV o . 00 cosO
=sin®—+ — v —=sinh, —=
or r 00 ( oy oy T ]
Therefore i: Coseg_sm@i
Ox or r 00
0 ( . 0 cos@ O j
—=|sinfd—+ —
oy or r 06
2 . .
Hence 0 IZ/ :(cosﬁi—Smei}[cosea—V—smea—V]
Ox or r 06 or r 06

0 oV sin@ oV ) sin@ 0O oV sin@ oV
=cosf@—| cos————— |————| cos@—— —
r or r 00 r 00 or r 00
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OV sin@oV sin@ oV
=c0sf| cosO—+——————
or r- 00 r orod
sin @ oV . OV cos@dV sinf oV
- cosé —sinf—— —_—— >
r &or or r 00 r 00

oV sinfcos@ OV sin’ @ oV
2 -2 + 2 2
or r oroo r- 06

+sin296_V 2sin@cosf oV

=cos’ @

+ 1
r or P’ 00 M
oV . 0 cos@ 0 . OV cos@ oV
and - = sin@—+ — || sin@—+ —_—
oy or r or r 00
. o( . 0V cos@ oV cos@ O . OV cos@ oV
=sin@—| sin@—+ — |+ —| sin@—+ —
or or r 060 r 00 or r 06
. . OV cos@dV cos@ OV
=sin@ sm@—z— ——+
or r- o6 r orof
cos@|( . oV oV sin@ oV cos@ OV ).
+ sin@ +cosf@—— —t >
r &or or r 00 r 00
., 0V sin@cos@ 0V  cos@sin@ oV
=sin" 0 —-+ - > —
or r orod r 00
cos@sin@ 0*V  cos’@ 0V costO oV
+ + + —
r o06or rt 06? r or
sin@cos@ oV
- 2
P 00 2)

Adding (1) and (2), we obtain
o oV o 1oV 18V

+ -
ox* oy or’ r or roe’

which is the required result.

Example 8. Transform the expression

2 2 2
xa—Z+y8—Z +(a* —x* =) (G_Zj + oz
ox oy ox oy

by the substitution x =rcosé, y=rsiné.

Solution. If V is a function of x, y, then
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oV _oVaox oVoy xoV yov
or oOxor Oyor roOx r Oy

oV oV oV 0 0
= r—=x—+y—=|x—+y— |V
or ox oy 0. oy
0 0 0
= r—=x—+y—
or ox = 0Oy
. 0 0 0
Similarl R S S
Y 060 oy Yox
0Z 0Z or 0Z 00 0Z sinf oz
Now — = — 4+ —— —=¢c0S60—— i
Oox Or ox 00 ox or r 00
oZ . _0Z «cos@oZ
—=sinf—+ —
oy or r 060
2 2 2 2
Therefore [G_Zj + 8_Z :(a_z) _,_Lz(a_zj
ox oy or r-\ 06

and the given expression is equal to

oz ., L l(ozY 1(ezY
r— | @ - —| +5| =
or or r-\ o6
,(0Z a’ /4
=a’| == | +| 5-1|| =] .
or 7 00

where u is any twice differentiable function of x and y.

Solution. We have
Ou Ou Ox 6_u 8_y

a  ox or dy or

X y rox r oy
ou ou ou
= F—=X—+y—
or ox oy

8( Guj 0 0 ou Ou
Therefore r—|lr—|=|x—+y— || x—+y—
or\ or ox = oy ox oy

(1)

2)

(1)
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ox\ ox oy oy\ @ oy
, 0’u . o*u o*u ,0u 6_u 8_u
o’ 4 Ox0y O0yox oy’ ox oy
Therefore
o’u  ou ou o*u Oou ou ou
Pt — =X S 2y X+ y— @)
or or ox OxOy oy ox oy
0u 0’u 0u ou .
SETE Gt ey (sing(1)
Again ou _ou 8_x+6_” .
’ 86 ox 06 oy 00
oo
oy d ox
2
Therefore 0 L; = xi—yﬁ x@_y@_u
06 oy = Ox oy ox
O Ou ou ou( ou ou
o\ oy ~ oOx ox\ oy = ox
2 2 2
:xzau—2 8u+yzabzl—x6—u—ya—u 3)

From (1), (2) and (3), we get the required result.
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